8b76a39d5d
- Addressed an issue with backward compatibility with Grbl v0.9-style GUIs. - It still may not work due to new data and states coming back from Grbl v1.1. Regardless, DO NOT TRY TO USE THE COMPATIBILITY MODE UNTIL THERE IS A REALLY GOOD REASON TO. - v0.9 GUI compatibility mode will be removed in future versions. You’ve been warned. It’s highly recommended for GUIs to update to the new v1.1 interface. - Compability mode will only fit on an Arduino Uno due to size increases. - Removed the REPORT_GUI_MODE compile option since it’s part of the v1.1 interface standard. - Updated the documentation to better describe the compatibility mode build option.
948 lines
38 KiB
C
948 lines
38 KiB
C
/*
|
|
report.c - reporting and messaging methods
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This file functions as the primary feedback interface for Grbl. Any outgoing data, such
|
|
as the protocol status messages, feedback messages, and status reports, are stored here.
|
|
For the most part, these functions primarily are called from protocol.c methods. If a
|
|
different style feedback is desired (i.e. JSON), then a user can change these following
|
|
methods to accomodate their needs.
|
|
*/
|
|
|
|
#include "grbl.h"
|
|
|
|
|
|
// Internal report utilities to reduce flash with repetitive tasks turned into functions.
|
|
void report_util_setting_prefix(uint8_t n) { serial_write('$'); print_uint8_base10(n); serial_write('='); }
|
|
static void report_util_line_feed() { printPgmString(PSTR("\r\n")); }
|
|
static void report_util_feedback_line_feed() { serial_write(']'); report_util_line_feed(); }
|
|
// static void report_util_comment_line_feed() { serial_write(')'); report_util_line_feed(); }
|
|
static void report_util_axis_values(float *axis_value) {
|
|
uint8_t idx;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
printFloat_CoordValue(axis_value[idx]);
|
|
if (idx < (N_AXIS-1)) { serial_write(','); }
|
|
}
|
|
}
|
|
|
|
/*
|
|
static void report_util_setting_string(uint8_t n) {
|
|
serial_write(' ');
|
|
serial_write('(');
|
|
switch(n) {
|
|
case 0: printPgmString(PSTR("stp pulse:us")); break;
|
|
case 1: printPgmString(PSTR("idl delay:ms")); break;
|
|
case 2: printPgmString(PSTR("stp inv:msk")); break;
|
|
case 3: printPgmString(PSTR("dir inv:msk")); break;
|
|
case 4: printPgmString(PSTR("stp enbl inv")); break;
|
|
case 5: printPgmString(PSTR("lim inv")); break;
|
|
case 6: printPgmString(PSTR("prb inv")); break;
|
|
case 10: printPgmString(PSTR("rpt:msk")); break;
|
|
case 11: printPgmString(PSTR("jnc dev:mm")); break;
|
|
case 12: printPgmString(PSTR("arc tol:mm")); break;
|
|
case 13: printPgmString(PSTR("rpt inch")); break;
|
|
case 20: printPgmString(PSTR("sft lim")); break;
|
|
case 21: printPgmString(PSTR("hrd lim")); break;
|
|
case 22: printPgmString(PSTR("hm cyc")); break;
|
|
case 23: printPgmString(PSTR("hm dir inv:msk")); break;
|
|
case 24: printPgmString(PSTR("hm feed:mm/min")); break;
|
|
case 25: printPgmString(PSTR("hm seek:mm/min")); break;
|
|
case 26: printPgmString(PSTR("hm delay:ms")); break;
|
|
case 27: printPgmString(PSTR("hm off:mm")); break;
|
|
case 30: printPgmString(PSTR("rpm max")); break;
|
|
case 31: printPgmString(PSTR("rpm min")); break;
|
|
case 32: printPgmString(PSTR("laser")); break;
|
|
default:
|
|
n -= AXIS_SETTINGS_START_VAL;
|
|
uint8_t idx = 0;
|
|
while (n < 10) {
|
|
if (n<10) {
|
|
print_uint8_base10(n+idx);
|
|
switch (idx) {
|
|
case 0: printPgmString(PSTR(":stp/mm")); break;
|
|
case 1: printPgmString(PSTR(":mm/min")); break;
|
|
case 2: printPgmString(PSTR(":mm/s^2")); break;
|
|
case 3: printPgmString(PSTR(":mm max")); break;
|
|
}
|
|
} else {
|
|
n -= 10;
|
|
idx++;
|
|
}
|
|
}
|
|
}
|
|
report_util_comment_line_feed();
|
|
}
|
|
*/
|
|
|
|
#ifndef USE_CLASSIC_GRBL_INTERFACE
|
|
static void report_util_uint8_setting(uint8_t n, int val) {
|
|
report_util_setting_prefix(n);
|
|
print_uint8_base10(val);
|
|
report_util_line_feed();
|
|
// report_util_setting_string(n);
|
|
}
|
|
static void report_util_float_setting(uint8_t n, float val, uint8_t n_decimal) {
|
|
report_util_setting_prefix(n);
|
|
printFloat(val,n_decimal);
|
|
report_util_line_feed();
|
|
// report_util_setting_string(n);
|
|
}
|
|
#endif
|
|
|
|
|
|
// Handles the primary confirmation protocol response for streaming interfaces and human-feedback.
|
|
// For every incoming line, this method responds with an 'ok' for a successful command or an
|
|
// 'error:' to indicate some error event with the line or some critical system error during
|
|
// operation. Errors events can originate from the g-code parser, settings module, or asynchronously
|
|
// from a critical error, such as a triggered hard limit. Interface should always monitor for these
|
|
// responses.
|
|
// NOTE: In REPORT_GUI_MODE, all error codes are greater than zero.
|
|
void report_status_message(uint8_t status_code)
|
|
{
|
|
switch(status_code) {
|
|
case STATUS_OK: // STATUS_OK
|
|
printPgmString(PSTR("ok\r\n")); break;
|
|
default:
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printPgmString(PSTR("error: "));
|
|
switch(status_code) {
|
|
case STATUS_EXPECTED_COMMAND_LETTER:
|
|
printPgmString(PSTR("Expected command letter")); break;
|
|
case STATUS_BAD_NUMBER_FORMAT:
|
|
printPgmString(PSTR("Bad number format")); break;
|
|
case STATUS_INVALID_STATEMENT:
|
|
printPgmString(PSTR("Invalid statement")); break;
|
|
case STATUS_NEGATIVE_VALUE:
|
|
printPgmString(PSTR("Value < 0")); break;
|
|
case STATUS_SETTING_DISABLED:
|
|
printPgmString(PSTR("Setting disabled")); break;
|
|
case STATUS_SETTING_STEP_PULSE_MIN:
|
|
printPgmString(PSTR("Value < 3 usec")); break;
|
|
case STATUS_SETTING_READ_FAIL:
|
|
printPgmString(PSTR("EEPROM read fail. Using defaults")); break;
|
|
case STATUS_IDLE_ERROR:
|
|
printPgmString(PSTR("Not idle")); break;
|
|
case STATUS_SYSTEM_GC_LOCK:
|
|
printPgmString(PSTR("G-code lock")); break;
|
|
case STATUS_SOFT_LIMIT_ERROR:
|
|
printPgmString(PSTR("Homing not enabled")); break;
|
|
case STATUS_OVERFLOW:
|
|
printPgmString(PSTR("Line overflow")); break;
|
|
#ifdef MAX_STEP_RATE_HZ
|
|
case STATUS_MAX_STEP_RATE_EXCEEDED:
|
|
printPgmString(PSTR("Step rate > 30kHz")); break;
|
|
#endif
|
|
case STATUS_CHECK_DOOR:
|
|
printPgmString(PSTR("Check Door")); break;
|
|
// case STATUS_LINE_LENGTH_EXCEEDED: // Supported on Grbl-Mega only.
|
|
// printPgmString(PSTR("Line length exceeded")); break;
|
|
case STATUS_TRAVEL_EXCEEDED:
|
|
printPgmString(PSTR("Travel exceeded")); break;
|
|
case STATUS_INVALID_JOG_COMMAND:
|
|
printPgmString(PSTR("Invalid jog command")); break;
|
|
// Common g-code parser errors.
|
|
case STATUS_GCODE_UNSUPPORTED_COMMAND:
|
|
printPgmString(PSTR("Unsupported command")); break;
|
|
case STATUS_GCODE_MODAL_GROUP_VIOLATION:
|
|
printPgmString(PSTR("Modal group violation")); break;
|
|
case STATUS_GCODE_UNDEFINED_FEED_RATE:
|
|
printPgmString(PSTR("Undefined feed rate")); break;
|
|
default:
|
|
// Remaining g-code parser errors with error codes
|
|
printPgmString(PSTR("Invalid gcode ID:"));
|
|
print_uint8_base10(status_code); // Print error code for user reference
|
|
}
|
|
#else
|
|
printPgmString(PSTR("error:"));
|
|
print_uint8_base10(status_code);
|
|
#endif
|
|
report_util_line_feed();
|
|
}
|
|
}
|
|
|
|
// Prints alarm messages.
|
|
void report_alarm_message(int8_t alarm_code)
|
|
{
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printPgmString(PSTR("ALARM: "));
|
|
switch (alarm_code) {
|
|
case ALARM_HARD_LIMIT_ERROR:
|
|
printPgmString(PSTR("Hard limit")); break;
|
|
case ALARM_SOFT_LIMIT_ERROR:
|
|
printPgmString(PSTR("Soft limit")); break;
|
|
case ALARM_ABORT_CYCLE:
|
|
printPgmString(PSTR("Abort during cycle")); break;
|
|
case ALARM_PROBE_FAIL_INITIAL:
|
|
case ALARM_PROBE_FAIL_CONTACT:
|
|
printPgmString(PSTR("Probe fail")); break;
|
|
case ALARM_HOMING_FAIL_RESET:
|
|
case ALARM_HOMING_FAIL_DOOR:
|
|
case ALARM_HOMING_FAIL_PULLOFF:
|
|
case ALARM_HOMING_FAIL_APPROACH:
|
|
printPgmString(PSTR("Homing fail")); break;
|
|
}
|
|
#else
|
|
printPgmString(PSTR("ALARM:"));
|
|
print_uint8_base10(alarm_code);
|
|
#endif
|
|
report_util_line_feed();
|
|
delay_ms(500); // Force delay to ensure message clears serial write buffer.
|
|
}
|
|
|
|
// Prints feedback messages. This serves as a centralized method to provide additional
|
|
// user feedback for things that are not of the status/alarm message protocol. These are
|
|
// messages such as setup warnings, switch toggling, and how to exit alarms.
|
|
// NOTE: For interfaces, messages are always placed within brackets. And if silent mode
|
|
// is installed, the message number codes are less than zero.
|
|
void report_feedback_message(uint8_t message_code)
|
|
{
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
serial_write('[');
|
|
#else
|
|
printPgmString(PSTR("[MSG:"));
|
|
#endif
|
|
switch(message_code) {
|
|
case MESSAGE_CRITICAL_EVENT:
|
|
printPgmString(PSTR("Reset to continue")); break;
|
|
case MESSAGE_ALARM_LOCK:
|
|
printPgmString(PSTR("'$H'|'$X' to unlock")); break;
|
|
case MESSAGE_ALARM_UNLOCK:
|
|
printPgmString(PSTR("Caution: Unlocked")); break;
|
|
case MESSAGE_ENABLED:
|
|
printPgmString(PSTR("Enabled")); break;
|
|
case MESSAGE_DISABLED:
|
|
printPgmString(PSTR("Disabled")); break;
|
|
case MESSAGE_SAFETY_DOOR_AJAR:
|
|
printPgmString(PSTR("Check Door")); break;
|
|
case MESSAGE_CHECK_LIMITS:
|
|
printPgmString(PSTR("Check Limits")); break;
|
|
case MESSAGE_PROGRAM_END:
|
|
printPgmString(PSTR("Pgm End")); break;
|
|
case MESSAGE_RESTORE_DEFAULTS:
|
|
printPgmString(PSTR("Restoring defaults")); break;
|
|
case MESSAGE_SPINDLE_RESTORE:
|
|
printPgmString(PSTR("Restoring spindle")); break;
|
|
case MESSAGE_SLEEP_MODE:
|
|
printPgmString(PSTR("Sleeping")); break;
|
|
}
|
|
report_util_feedback_line_feed();
|
|
}
|
|
|
|
|
|
// Welcome message
|
|
void report_init_message()
|
|
{
|
|
printPgmString(PSTR("\r\nGrbl " GRBL_VERSION " ['$' for help]\r\n"));
|
|
}
|
|
|
|
// Grbl help message
|
|
void report_grbl_help() {
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printPgmString(PSTR("$$ (view Grbl settings)\r\n"
|
|
"$# (view # parameters)\r\n"
|
|
"$G (view parser state)\r\n"
|
|
"$I (view build info)\r\n"
|
|
"$N (view startup blocks)\r\n"
|
|
"$x=value (save Grbl setting)\r\n"
|
|
"$Nx=line (save startup block)\r\n"
|
|
"$J=line (jog)\r\n"
|
|
"$SLP (sleep mode)\r\n"
|
|
"$C (check gcode mode)\r\n"
|
|
"$X (kill alarm lock)\r\n"
|
|
"$H (run homing cycle)\r\n"
|
|
"~ (cycle start)\r\n"
|
|
"! (feed hold)\r\n"
|
|
"? (current status)\r\n"
|
|
"ctrl-x (reset Grbl)\r\n"));
|
|
#else
|
|
printPgmString(PSTR("[HLP:$$ $# $G $I $N $x=val $Nx=line $J=line $SLP $C $X $H ~ ! ? ctrl-x]\r\n"));
|
|
#endif
|
|
}
|
|
|
|
|
|
// Grbl global settings print out.
|
|
// NOTE: The numbering scheme here must correlate to storing in settings.c
|
|
void report_grbl_settings() {
|
|
// Print Grbl settings.
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printPgmString(PSTR("$0=")); print_uint8_base10(settings.pulse_microseconds);
|
|
printPgmString(PSTR(" (step pulse, usec)\r\n$1=")); print_uint8_base10(settings.stepper_idle_lock_time);
|
|
printPgmString(PSTR(" (step idle delay, msec)\r\n$2=")); print_uint8_base10(settings.step_invert_mask);
|
|
printPgmString(PSTR(" (step port invert mask)\r\n$3=")); print_uint8_base10(settings.dir_invert_mask);
|
|
printPgmString(PSTR(" (dir port invert mask)\r\n$4=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
|
|
printPgmString(PSTR(" (step enable invert, bool)\r\n$5=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
|
|
printPgmString(PSTR(" (limit pins invert, bool)\r\n$6=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN));
|
|
printPgmString(PSTR(" (probe pin invert, bool)\r\n$10=")); print_uint8_base10(settings.status_report_mask);
|
|
printPgmString(PSTR(" (status report mask)\r\n$11=")); printFloat(settings.junction_deviation,N_DECIMAL_SETTINGVALUE);
|
|
printPgmString(PSTR(" (junction deviation, mm)\r\n$12=")); printFloat(settings.arc_tolerance,N_DECIMAL_SETTINGVALUE);
|
|
printPgmString(PSTR(" (arc tolerance, mm)\r\n$13=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
|
|
printPgmString(PSTR(" (report inches, bool)\r\n$20=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
|
|
printPgmString(PSTR(" (soft limits, bool)\r\n$21=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
|
|
printPgmString(PSTR(" (hard limits, bool)\r\n$22=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
|
|
printPgmString(PSTR(" (homing cycle, bool)\r\n$23=")); print_uint8_base10(settings.homing_dir_mask);
|
|
printPgmString(PSTR(" (homing dir invert mask\r\n$24=")); printFloat(settings.homing_feed_rate,N_DECIMAL_SETTINGVALUE);
|
|
printPgmString(PSTR(" (homing feed, mm/min)\r\n$25=")); printFloat(settings.homing_seek_rate,N_DECIMAL_SETTINGVALUE);
|
|
printPgmString(PSTR(" (homing seek, mm/min)\r\n$26=")); print_uint8_base10(settings.homing_debounce_delay);
|
|
printPgmString(PSTR(" (homing debounce, msec)\r\n$27=")); printFloat(settings.homing_pulloff,N_DECIMAL_SETTINGVALUE);
|
|
printPgmString(PSTR(" (homing pull-off, mm)\r\n$30=")); printFloat(settings.rpm_max,N_DECIMAL_RPMVALUE);
|
|
printPgmString(PSTR(" (rpm max)\r\n$31=")); printFloat(settings.rpm_min,N_DECIMAL_RPMVALUE);
|
|
#ifdef VARIABLE_SPINDLE
|
|
printPgmString(PSTR(" (rpm min)\r\n$32=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_LASER_MODE));
|
|
printPgmString(PSTR(" (laser mode, bool)\r\n"));
|
|
#else
|
|
printPgmString(PSTR(" (rpm min)\r\n$32=0 (laser mode, bool)\r\n"));
|
|
#endif
|
|
// Print axis settings
|
|
uint8_t idx, set_idx;
|
|
uint8_t val = AXIS_SETTINGS_START_VAL;
|
|
for (set_idx=0; set_idx<AXIS_N_SETTINGS; set_idx++) {
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
serial_write('$');
|
|
print_uint8_base10(val+idx);
|
|
serial_write('=');
|
|
switch (set_idx) {
|
|
case 0: printFloat(settings.steps_per_mm[idx],N_DECIMAL_SETTINGVALUE); break;
|
|
case 1: printFloat(settings.max_rate[idx],N_DECIMAL_SETTINGVALUE); break;
|
|
case 2: printFloat(settings.acceleration[idx]/(60*60),N_DECIMAL_SETTINGVALUE); break;
|
|
case 3: printFloat(-settings.max_travel[idx],N_DECIMAL_SETTINGVALUE); break;
|
|
}
|
|
serial_write(' ');
|
|
serial_write('(');
|
|
switch (idx) {
|
|
case X_AXIS: printPgmString(PSTR("x")); break;
|
|
case Y_AXIS: printPgmString(PSTR("y")); break;
|
|
case Z_AXIS: printPgmString(PSTR("z")); break;
|
|
}
|
|
switch (set_idx) {
|
|
case 0: printPgmString(PSTR(", step/mm")); break;
|
|
case 1: printPgmString(PSTR(" max rate, mm/min")); break;
|
|
case 2: printPgmString(PSTR(" accel, mm/sec^2")); break;
|
|
case 3: printPgmString(PSTR(" max travel, mm")); break;
|
|
}
|
|
printPgmString(PSTR(")\r\n"));
|
|
}
|
|
val += AXIS_SETTINGS_INCREMENT;
|
|
}
|
|
#else
|
|
report_util_uint8_setting(0,settings.pulse_microseconds);
|
|
report_util_uint8_setting(1,settings.stepper_idle_lock_time);
|
|
report_util_uint8_setting(2,settings.step_invert_mask);
|
|
report_util_uint8_setting(3,settings.dir_invert_mask);
|
|
report_util_uint8_setting(4,bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
|
|
report_util_uint8_setting(5,bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
|
|
report_util_uint8_setting(6,bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN));
|
|
report_util_uint8_setting(10,settings.status_report_mask);
|
|
report_util_float_setting(11,settings.junction_deviation,N_DECIMAL_SETTINGVALUE);
|
|
report_util_float_setting(12,settings.arc_tolerance,N_DECIMAL_SETTINGVALUE);
|
|
report_util_uint8_setting(13,bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
|
|
report_util_uint8_setting(20,bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
|
|
report_util_uint8_setting(21,bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
|
|
report_util_uint8_setting(22,bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
|
|
report_util_uint8_setting(23,settings.homing_dir_mask);
|
|
report_util_float_setting(24,settings.homing_feed_rate,N_DECIMAL_SETTINGVALUE);
|
|
report_util_float_setting(25,settings.homing_seek_rate,N_DECIMAL_SETTINGVALUE);
|
|
report_util_uint8_setting(26,settings.homing_debounce_delay);
|
|
report_util_float_setting(27,settings.homing_pulloff,N_DECIMAL_SETTINGVALUE);
|
|
report_util_float_setting(30,settings.rpm_max,N_DECIMAL_RPMVALUE);
|
|
report_util_float_setting(31,settings.rpm_min,N_DECIMAL_RPMVALUE);
|
|
#ifdef VARIABLE_SPINDLE
|
|
report_util_uint8_setting(32,bit_istrue(settings.flags,BITFLAG_LASER_MODE));
|
|
#else
|
|
report_util_uint8_setting(32,0);
|
|
#endif
|
|
// Print axis settings
|
|
uint8_t idx, set_idx;
|
|
uint8_t val = AXIS_SETTINGS_START_VAL;
|
|
for (set_idx=0; set_idx<AXIS_N_SETTINGS; set_idx++) {
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
switch (set_idx) {
|
|
case 0: report_util_float_setting(val+idx,settings.steps_per_mm[idx],N_DECIMAL_SETTINGVALUE); break;
|
|
case 1: report_util_float_setting(val+idx,settings.max_rate[idx],N_DECIMAL_SETTINGVALUE); break;
|
|
case 2: report_util_float_setting(val+idx,settings.acceleration[idx]/(60*60),N_DECIMAL_SETTINGVALUE); break;
|
|
case 3: report_util_float_setting(val+idx,-settings.max_travel[idx],N_DECIMAL_SETTINGVALUE); break;
|
|
}
|
|
}
|
|
val += AXIS_SETTINGS_INCREMENT;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
// Prints current probe parameters. Upon a probe command, these parameters are updated upon a
|
|
// successful probe or upon a failed probe with the G38.3 without errors command (if supported).
|
|
// These values are retained until Grbl is power-cycled, whereby they will be re-zeroed.
|
|
void report_probe_parameters()
|
|
{
|
|
// Report in terms of machine position.
|
|
printPgmString(PSTR("[PRB:"));
|
|
float print_position[N_AXIS];
|
|
system_convert_array_steps_to_mpos(print_position,sys_probe_position);
|
|
report_util_axis_values(print_position);
|
|
serial_write(':');
|
|
print_uint8_base10(sys.probe_succeeded);
|
|
report_util_feedback_line_feed();
|
|
}
|
|
|
|
|
|
// Prints Grbl NGC parameters (coordinate offsets, probing)
|
|
void report_ngc_parameters()
|
|
{
|
|
float coord_data[N_AXIS];
|
|
uint8_t coord_select;
|
|
for (coord_select = 0; coord_select <= SETTING_INDEX_NCOORD; coord_select++) {
|
|
if (!(settings_read_coord_data(coord_select,coord_data))) {
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
return;
|
|
}
|
|
printPgmString(PSTR("[G"));
|
|
switch (coord_select) {
|
|
case 6: printPgmString(PSTR("28")); break;
|
|
case 7: printPgmString(PSTR("30")); break;
|
|
default: print_uint8_base10(coord_select+54); break; // G54-G59
|
|
}
|
|
serial_write(':');
|
|
report_util_axis_values(coord_data);
|
|
report_util_feedback_line_feed();
|
|
}
|
|
printPgmString(PSTR("[G92:")); // Print G92,G92.1 which are not persistent in memory
|
|
report_util_axis_values(gc_state.coord_offset);
|
|
report_util_feedback_line_feed();
|
|
printPgmString(PSTR("[TLO:")); // Print tool length offset value
|
|
printFloat_CoordValue(gc_state.tool_length_offset);
|
|
report_util_feedback_line_feed();
|
|
report_probe_parameters(); // Print probe parameters. Not persistent in memory.
|
|
}
|
|
|
|
|
|
// Print current gcode parser mode state
|
|
void report_gcode_modes()
|
|
{
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printPgmString(PSTR("[G"));
|
|
#else
|
|
printPgmString(PSTR("[GC:G"));
|
|
#endif
|
|
switch (gc_state.modal.motion) {
|
|
case MOTION_MODE_SEEK : serial_write('0'); break;
|
|
case MOTION_MODE_LINEAR : serial_write('1'); break;
|
|
case MOTION_MODE_CW_ARC : serial_write('2'); break;
|
|
case MOTION_MODE_CCW_ARC : serial_write('3'); break;
|
|
case MOTION_MODE_NONE : printPgmString(PSTR("80")); break;
|
|
default:
|
|
printPgmString(PSTR("38."));
|
|
print_uint8_base10(gc_state.modal.motion - (MOTION_MODE_PROBE_TOWARD-2));
|
|
}
|
|
|
|
printPgmString(PSTR(" G"));
|
|
print_uint8_base10(gc_state.modal.coord_select+54);
|
|
|
|
printPgmString(PSTR(" G1"));
|
|
switch (gc_state.modal.plane_select) {
|
|
case PLANE_SELECT_XY : serial_write('7'); break;
|
|
case PLANE_SELECT_ZX : serial_write('8'); break;
|
|
case PLANE_SELECT_YZ : serial_write('9'); break;
|
|
}
|
|
|
|
printPgmString(PSTR(" G2"));
|
|
if (gc_state.modal.units == UNITS_MODE_MM) { serial_write('1'); }
|
|
else { serial_write('0'); }
|
|
|
|
printPgmString(PSTR(" G9"));
|
|
if (gc_state.modal.distance == DISTANCE_MODE_ABSOLUTE) { serial_write('0'); }
|
|
else { serial_write('1'); }
|
|
|
|
printPgmString(PSTR(" G9"));
|
|
if (gc_state.modal.feed_rate == FEED_RATE_MODE_INVERSE_TIME) { serial_write('3'); }
|
|
else { serial_write('4'); }
|
|
|
|
printPgmString(PSTR(" M"));
|
|
switch (gc_state.modal.program_flow) {
|
|
case PROGRAM_FLOW_RUNNING : serial_write('0'); break;
|
|
case PROGRAM_FLOW_PAUSED : serial_write('1'); break;
|
|
case PROGRAM_FLOW_COMPLETED : serial_write('2'); break;
|
|
}
|
|
|
|
printPgmString(PSTR(" M"));
|
|
switch (gc_state.modal.spindle) {
|
|
case SPINDLE_ENABLE_CW : serial_write('3'); break;
|
|
case SPINDLE_ENABLE_CCW : serial_write('4'); break;
|
|
case SPINDLE_DISABLE : serial_write('5'); break;
|
|
}
|
|
|
|
printPgmString(PSTR(" M"));
|
|
#ifdef ENABLE_M7
|
|
if (gc_state.modal.coolant) { // Note: Multiple coolant states may be active at the same time.
|
|
if (gc_state.modal.coolant & PL_COND_FLAG_COOLANT_MIST) { serial_write('7'); }
|
|
if (gc_state.modal.coolant & PL_COND_FLAG_COOLANT_FLOOD) { serial_write('8'); }
|
|
} else { serial_write('9'); }
|
|
#else
|
|
if (gc_state.modal.coolant) { serial_write('8'); }
|
|
else { serial_write('9'); }
|
|
#endif
|
|
|
|
printPgmString(PSTR(" T"));
|
|
print_uint8_base10(gc_state.tool);
|
|
|
|
printPgmString(PSTR(" F"));
|
|
printFloat_RateValue(gc_state.feed_rate);
|
|
|
|
#ifdef VARIABLE_SPINDLE
|
|
printPgmString(PSTR(" S"));
|
|
printFloat(gc_state.spindle_speed,N_DECIMAL_RPMVALUE);
|
|
#endif
|
|
|
|
report_util_feedback_line_feed();
|
|
}
|
|
|
|
// Prints specified startup line
|
|
void report_startup_line(uint8_t n, char *line)
|
|
{
|
|
printPgmString(PSTR("$N"));
|
|
print_uint8_base10(n);
|
|
serial_write('=');
|
|
printString(line);
|
|
report_util_line_feed();
|
|
}
|
|
|
|
void report_execute_startup_message(char *line, uint8_t status_code)
|
|
{
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printString(line);
|
|
report_status_message(status_code);
|
|
#else
|
|
serial_write('>');
|
|
printString(line);
|
|
serial_write(':');
|
|
report_status_message(status_code);
|
|
#endif
|
|
}
|
|
|
|
// Prints build info line
|
|
void report_build_info(char *line)
|
|
{
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
printPgmString(PSTR("[" GRBL_VERSION "." GRBL_VERSION_BUILD ":"));
|
|
printString(line);
|
|
#else
|
|
printPgmString(PSTR("[VER:" GRBL_VERSION "." GRBL_VERSION_BUILD ":"));
|
|
printString(line);
|
|
report_util_feedback_line_feed();
|
|
printPgmString(PSTR("[OPT:")); // Generate compile-time build option list
|
|
#ifdef VARIABLE_SPINDLE
|
|
serial_write('V');
|
|
#endif
|
|
#ifdef USE_LINE_NUMBERS
|
|
serial_write('N');
|
|
#endif
|
|
#ifdef ENABLE_M7
|
|
serial_write('M');
|
|
#endif
|
|
#ifdef COREXY
|
|
serial_write('C');
|
|
#endif
|
|
#ifdef PARKING_ENABLE
|
|
serial_write('P');
|
|
#endif
|
|
#ifdef HOMING_FORCE_SET_ORIGIN
|
|
serial_write('Z');
|
|
#endif
|
|
#ifdef HOMING_SINGLE_AXIS_COMMANDS
|
|
serial_write('H');
|
|
#endif
|
|
#ifdef LIMITS_TWO_SWITCHES_ON_AXES
|
|
serial_write('L');
|
|
#endif
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
serial_write('R');
|
|
#endif
|
|
#ifndef ENABLE_RESTORE_EEPROM_WIPE_ALL // NOTE: Shown when disabled.
|
|
serial_write('*');
|
|
#endif
|
|
#ifndef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS // NOTE: Shown when disabled.
|
|
serial_write('$');
|
|
#endif
|
|
#ifndef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS // NOTE: Shown when disabled.
|
|
serial_write('#');
|
|
#endif
|
|
#ifndef ENABLE_BUILD_INFO_WRITE_COMMAND // NOTE: Shown when disabled.
|
|
serial_write('I');
|
|
#endif
|
|
#ifndef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE // NOTE: Shown when disabled.
|
|
serial_write('E');
|
|
#endif
|
|
#ifndef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE // NOTE: Shown when disabled.
|
|
serial_write('W');
|
|
#endif
|
|
// NOTE: Compiled values, like override increments/max/min values, may be added at some point later.
|
|
// These will likely have a comma delimiter to separate them.
|
|
#endif
|
|
|
|
report_util_feedback_line_feed();
|
|
}
|
|
|
|
|
|
// Prints the character string line Grbl has received from the user, which has been pre-parsed,
|
|
// and has been sent into protocol_execute_line() routine to be executed by Grbl.
|
|
void report_echo_line_received(char *line)
|
|
{
|
|
printPgmString(PSTR("[echo: ")); printString(line);
|
|
report_util_feedback_line_feed();
|
|
}
|
|
|
|
|
|
// Prints real-time data. This function grabs a real-time snapshot of the stepper subprogram
|
|
// and the actual location of the CNC machine. Users may change the following function to their
|
|
// specific needs, but the desired real-time data report must be as short as possible. This is
|
|
// requires as it minimizes the computational overhead and allows grbl to keep running smoothly,
|
|
// especially during g-code programs with fast, short line segments and high frequency reports (5-20Hz).
|
|
void report_realtime_status()
|
|
{
|
|
#ifdef USE_CLASSIC_GRBL_INTERFACE
|
|
|
|
uint8_t idx;
|
|
int32_t current_position[N_AXIS]; // Copy current state of the system position variable
|
|
memcpy(current_position,sys_position,sizeof(sys_position));
|
|
float print_position[N_AXIS];
|
|
|
|
// Report current machine state
|
|
switch (sys.state) {
|
|
case STATE_IDLE: printPgmString(PSTR("<Idle")); break;
|
|
case STATE_CYCLE: printPgmString(PSTR("<Run")); break;
|
|
case STATE_HOLD:
|
|
if (!(sys.suspend & SUSPEND_JOG_CANCEL)) {
|
|
printPgmString(PSTR("<Hold"));
|
|
break;
|
|
} // Continues to print jog state during jog cancel.
|
|
case STATE_JOG: printPgmString(PSTR("<Jog")); break;
|
|
case STATE_HOMING: printPgmString(PSTR("<Home")); break;
|
|
case STATE_ALARM: printPgmString(PSTR("<Alarm")); break;
|
|
case STATE_CHECK_MODE: printPgmString(PSTR("<Check")); break;
|
|
case STATE_SAFETY_DOOR:
|
|
if (!(sys.suspend & SUSPEND_RETRACT_COMPLETE)) {
|
|
printPgmString(PSTR("<Door"));
|
|
} else {
|
|
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) { printPgmString(PSTR("<Door")); }
|
|
else { printPgmString(PSTR("<Hold")); }
|
|
}
|
|
break;
|
|
case STATE_SLEEP: printPgmString(PSTR("<Sleep")); break;
|
|
}
|
|
|
|
// If reporting a position, convert the current step count (current_position) to millimeters.
|
|
if (bit_istrue(settings.status_report_mask,(BITFLAG_RT_STATUS_MACHINE_POSITION | BITFLAG_RT_STATUS_WORK_POSITION))) {
|
|
system_convert_array_steps_to_mpos(print_position,current_position);
|
|
}
|
|
|
|
// Report machine position
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_MACHINE_POSITION)) {
|
|
printPgmString(PSTR(",MPos:"));
|
|
for (idx=0; idx< N_AXIS; idx++) {
|
|
printFloat_CoordValue(print_position[idx]);
|
|
if (idx < (N_AXIS-1)) { serial_write(','); }
|
|
}
|
|
}
|
|
|
|
// Report work position
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_WORK_POSITION)) {
|
|
printPgmString(PSTR(",WPos:"));
|
|
for (idx=0; idx< N_AXIS; idx++) {
|
|
// Apply work coordinate offsets and tool length offset to current position.
|
|
print_position[idx] -= gc_state.coord_system[idx]+gc_state.coord_offset[idx];
|
|
if (idx == TOOL_LENGTH_OFFSET_AXIS) { print_position[idx] -= gc_state.tool_length_offset; }
|
|
printFloat_CoordValue(print_position[idx]);
|
|
if (idx < (N_AXIS-1)) { serial_write(','); }
|
|
}
|
|
}
|
|
|
|
// Returns the number of active blocks are in the planner buffer.
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_PLANNER_BUFFER)) {
|
|
printPgmString(PSTR(",Buf:"));
|
|
print_uint8_base10(plan_get_block_buffer_count());
|
|
}
|
|
|
|
// Report serial read buffer status
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_SERIAL_RX)) {
|
|
printPgmString(PSTR(",RX:"));
|
|
print_uint8_base10(serial_get_rx_buffer_count());
|
|
}
|
|
|
|
#ifdef USE_LINE_NUMBERS
|
|
// Report current line number
|
|
printPgmString(PSTR(",Ln:"));
|
|
int32_t ln=0;
|
|
plan_block_t * pb = plan_get_current_block();
|
|
if(pb != NULL) {
|
|
ln = pb->line_number;
|
|
}
|
|
printInteger(ln);
|
|
#endif
|
|
|
|
#ifdef REPORT_REALTIME_RATE
|
|
// Report realtime rate
|
|
printPgmString(PSTR(",F:"));
|
|
printFloat_RateValue(st_get_realtime_rate());
|
|
#endif
|
|
|
|
#ifdef REPORT_ALL_PIN_STATES
|
|
if (bit_istrue(settings.status_report_mask,
|
|
( BITFLAG_RT_STATUS_LIMIT_PINS| BITFLAG_RT_STATUS_PROBE_PIN | BITFLAG_RT_STATUS_CONTROL_PINS ))) {
|
|
printPgmString(PSTR(",Pin:"));
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_LIMIT_PINS)) {
|
|
print_uint8_base2_ndigit(limits_get_state(),N_AXIS);
|
|
}
|
|
printPgmString(PSTR("|"));
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_PROBE_PIN)) {
|
|
if (probe_get_state()) { printPgmString(PSTR("1")); }
|
|
else { printPgmString(PSTR("0")); }
|
|
}
|
|
printPgmString(PSTR("|"));
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_CONTROL_PINS)) {
|
|
print_uint8_base2_ndigit(system_control_get_state(),N_CONTROL_PIN);
|
|
}
|
|
}
|
|
#else
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_LIMIT_PINS)) {
|
|
printPgmString(PSTR(",Lim:"));
|
|
print_uint8_base2_ndigit(limits_get_state(),N_AXIS);
|
|
}
|
|
#endif
|
|
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_OVERRIDES)) {
|
|
printPgmString(PSTR(",Ov:"));
|
|
print_uint8_base10(sys.f_override);
|
|
serial_write(',');
|
|
print_uint8_base10(sys.r_override);
|
|
serial_write(',');
|
|
print_uint8_base10(sys.spindle_speed_ovr);
|
|
|
|
uint8_t sp_state = spindle_get_state();
|
|
uint8_t cl_state = coolant_get_state();
|
|
if (sp_state || cl_state) {
|
|
printPgmString(PSTR(",A:"));
|
|
if (sp_state) { // != SPINDLE_STATE_DISABLE
|
|
#ifdef VARIABLE_SPINDLE
|
|
#ifdef USE_SPINDLE_DIR_AS_ENABLE_PIN
|
|
serial_write('S'); // CW
|
|
#else
|
|
if (sp_state == SPINDLE_STATE_CW) { serial_write('S'); } // CW
|
|
else { serial_write('C'); } // CCW
|
|
#endif
|
|
#else
|
|
if (sp_state & SPINDLE_STATE_CW) { serial_write('S'); } // CW
|
|
else { serial_write('C'); } // CCW
|
|
#endif
|
|
}
|
|
if (cl_state & COOLANT_STATE_FLOOD) { serial_write('F'); }
|
|
#ifdef ENABLE_M7
|
|
if (cl_state & COOLANT_STATE_MIST) { serial_write('M'); }
|
|
#endif
|
|
}
|
|
}
|
|
|
|
printPgmString(PSTR(">\r\n"));
|
|
|
|
#else
|
|
|
|
uint8_t idx;
|
|
int32_t current_position[N_AXIS]; // Copy current state of the system position variable
|
|
memcpy(current_position,sys_position,sizeof(sys_position));
|
|
float print_position[N_AXIS];
|
|
system_convert_array_steps_to_mpos(print_position,current_position);
|
|
|
|
// Report current machine state and sub-states
|
|
serial_write('<');
|
|
switch (sys.state) {
|
|
case STATE_IDLE: printPgmString(PSTR("Idle")); break;
|
|
case STATE_CYCLE: printPgmString(PSTR("Run")); break;
|
|
case STATE_HOLD:
|
|
if (!(sys.suspend & SUSPEND_JOG_CANCEL)) {
|
|
printPgmString(PSTR("Hold:"));
|
|
if (sys.suspend & SUSPEND_HOLD_COMPLETE) { serial_write('0'); } // Ready to resume
|
|
else { serial_write('1'); } // Actively holding
|
|
break;
|
|
} // Continues to print jog state during jog cancel.
|
|
case STATE_JOG: printPgmString(PSTR("Jog")); break;
|
|
case STATE_HOMING: printPgmString(PSTR("Home")); break;
|
|
case STATE_ALARM: printPgmString(PSTR("Alarm")); break;
|
|
case STATE_CHECK_MODE: printPgmString(PSTR("Check")); break;
|
|
case STATE_SAFETY_DOOR:
|
|
printPgmString(PSTR("Door:"));
|
|
if (sys.suspend & SUSPEND_INITIATE_RESTORE) {
|
|
serial_write('3'); // Restoring
|
|
} else {
|
|
if (sys.suspend & SUSPEND_RETRACT_COMPLETE) {
|
|
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) {
|
|
serial_write('1'); // Door ajar
|
|
} else {
|
|
serial_write('0');
|
|
} // Door closed and ready to resume
|
|
} else {
|
|
serial_write('2'); // Retracting
|
|
}
|
|
}
|
|
break;
|
|
case STATE_SLEEP: printPgmString(PSTR("Sleep")); break;
|
|
}
|
|
|
|
float wco[N_AXIS];
|
|
if (bit_isfalse(settings.status_report_mask,BITFLAG_RT_STATUS_POSITION_TYPE) ||
|
|
(sys.report_wco_counter >= REPORT_WCO_REFRESH_BUSY_COUNT) ) {
|
|
for (idx=0; idx< N_AXIS; idx++) {
|
|
// Apply work coordinate offsets and tool length offset to current position.
|
|
wco[idx] = gc_state.coord_system[idx]+gc_state.coord_offset[idx];
|
|
if (idx == TOOL_LENGTH_OFFSET_AXIS) { wco[idx] += gc_state.tool_length_offset; }
|
|
if (bit_isfalse(settings.status_report_mask,BITFLAG_RT_STATUS_POSITION_TYPE)) {
|
|
print_position[idx] -= wco[idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Report machine position
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_POSITION_TYPE)) {
|
|
printPgmString(PSTR("|MPos:"));
|
|
} else {
|
|
printPgmString(PSTR("|WPos:"));
|
|
}
|
|
report_util_axis_values(print_position);
|
|
|
|
// Returns planner and serial read buffer states.
|
|
#ifdef REPORT_FIELD_BUFFER_STATE
|
|
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_BUFFER_STATE)) {
|
|
printPgmString(PSTR("|Bf:"));
|
|
print_uint8_base10(plan_get_block_buffer_available());
|
|
serial_write(',');
|
|
print_uint8_base10(serial_get_rx_buffer_available());
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_LINE_NUMBERS
|
|
#ifdef REPORT_FIELD_LINE_NUMBERS
|
|
// Report current line number
|
|
plan_block_t * cur_block = plan_get_current_block();
|
|
if (cur_block != NULL) {
|
|
uint32_t ln = cur_block->line_number;
|
|
if (ln > 0) {
|
|
printPgmString(PSTR("|Ln:"));
|
|
printInteger(ln);
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// Report realtime feed speed
|
|
#ifdef REPORT_FIELD_CURRENT_FEED_SPEED
|
|
#ifdef VARIABLE_SPINDLE
|
|
printPgmString(PSTR("|FS:"));
|
|
printFloat_RateValue(st_get_realtime_rate());
|
|
serial_write(',');
|
|
printFloat(sys.spindle_speed,N_DECIMAL_RPMVALUE);
|
|
#else
|
|
printPgmString(PSTR("|F:"));
|
|
printFloat_RateValue(st_get_realtime_rate());
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef REPORT_FIELD_PIN_STATE
|
|
uint8_t lim_pin_state = limits_get_state();
|
|
uint8_t ctrl_pin_state = system_control_get_state();
|
|
uint8_t prb_pin_state = probe_get_state();
|
|
if (lim_pin_state | ctrl_pin_state | prb_pin_state) {
|
|
printPgmString(PSTR("|Pn:"));
|
|
if (prb_pin_state) { serial_write('P'); }
|
|
if (lim_pin_state) {
|
|
if (bit_istrue(lim_pin_state,bit(X_AXIS))) { serial_write('X'); }
|
|
if (bit_istrue(lim_pin_state,bit(Y_AXIS))) { serial_write('Y'); }
|
|
if (bit_istrue(lim_pin_state,bit(Z_AXIS))) { serial_write('Z'); }
|
|
}
|
|
if (ctrl_pin_state) {
|
|
#ifdef ENABLE_SAFETY_DOOR_INPUT_PIN
|
|
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_SAFETY_DOOR)) { serial_write('D'); }
|
|
#endif
|
|
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_RESET)) { serial_write('R'); }
|
|
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_FEED_HOLD)) { serial_write('H'); }
|
|
if (bit_istrue(ctrl_pin_state,CONTROL_PIN_INDEX_CYCLE_START)) { serial_write('S'); }
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef REPORT_FIELD_WORK_COORD_OFFSET
|
|
if (sys.report_wco_counter++ >= REPORT_WCO_REFRESH_BUSY_COUNT) {
|
|
if (sys.state & (STATE_HOMING | STATE_CYCLE | STATE_HOLD | STATE_JOG | STATE_SAFETY_DOOR)) {
|
|
sys.report_wco_counter = 1; // Reset counter for slow refresh
|
|
} else { sys.report_wco_counter = (REPORT_WCO_REFRESH_BUSY_COUNT-REPORT_WCO_REFRESH_IDLE_COUNT+1); }
|
|
if (sys.report_ovr_counter >= REPORT_OVR_REFRESH_BUSY_COUNT) {
|
|
sys.report_ovr_counter = (REPORT_OVR_REFRESH_BUSY_COUNT-1); // Set override on next report.
|
|
}
|
|
printPgmString(PSTR("|WCO:"));
|
|
report_util_axis_values(wco);
|
|
}
|
|
#endif
|
|
|
|
#ifdef REPORT_FIELD_OVERRIDES
|
|
if (sys.report_ovr_counter++ >= REPORT_OVR_REFRESH_BUSY_COUNT) {
|
|
if (sys.state & (STATE_HOMING | STATE_CYCLE | STATE_HOLD | STATE_JOG | STATE_SAFETY_DOOR)) {
|
|
sys.report_ovr_counter = 1; // Reset counter for slow refresh
|
|
} else { sys.report_ovr_counter = (REPORT_OVR_REFRESH_BUSY_COUNT-REPORT_OVR_REFRESH_IDLE_COUNT+1); }
|
|
printPgmString(PSTR("|Ov:"));
|
|
print_uint8_base10(sys.f_override);
|
|
serial_write(',');
|
|
print_uint8_base10(sys.r_override);
|
|
serial_write(',');
|
|
print_uint8_base10(sys.spindle_speed_ovr);
|
|
|
|
uint8_t sp_state = spindle_get_state();
|
|
uint8_t cl_state = coolant_get_state();
|
|
if (sp_state || cl_state) {
|
|
printPgmString(PSTR("|A:"));
|
|
if (sp_state) { // != SPINDLE_STATE_DISABLE
|
|
#ifdef VARIABLE_SPINDLE
|
|
#ifdef USE_SPINDLE_DIR_AS_ENABLE_PIN
|
|
serial_write('S'); // CW
|
|
#else
|
|
if (sp_state == SPINDLE_STATE_CW) { serial_write('S'); } // CW
|
|
else { serial_write('C'); } // CCW
|
|
#endif
|
|
#else
|
|
if (sp_state & SPINDLE_STATE_CW) { serial_write('S'); } // CW
|
|
else { serial_write('C'); } // CCW
|
|
#endif
|
|
}
|
|
if (cl_state & COOLANT_STATE_FLOOD) { serial_write('F'); }
|
|
#ifdef ENABLE_M7
|
|
if (cl_state & COOLANT_STATE_MIST) { serial_write('M'); }
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
serial_write('>');
|
|
report_util_line_feed();
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void report_realtime_debug()
|
|
{
|
|
|
|
}
|
|
#endif
|