grbl-LPC-CoreXY/grbl/planner.h
Sonny Jeon ed790c9fa2 v1.1d: Tweaked interface a bit. Added realtime spindle speed and build option data. Minor bug fixes.
- Increment to v1.1d due to interface tweaks.

- Based on GUI dev feedback, the toggle overrides report was removed
and replace with showing “accessory state”. This shows a character if a
particular accessory is enabled, like the spindle or flood coolant.
These can be directly altered by the toggle overrides, so when they
execute, a GUI will be able to observe the state altering as feedback.

- Altered the real-time feed rate to show real-time spindle speed as
well. It was an over-sight on my part. It’s needed because it’s hard to
know what the current spindle speed is when overrides are altering it.
Especially during something like a laser cutting job when its important
to know how spindle speed overrides are effecting things.

- Real-time spindle speed is not shown if VARIABLE_SPINDLE is disabled.
The old real-time feed rate data field will show instead.

- Compile-time option data is now included in another message
immediately following the build info version string, starting with
`[OPT:`. A character code follows the data type name with each
indicating a particular option enabled or disabled. This will help
immensely with debugging Grbl as well as help GUIs know exactly how
Grbl was compiled.

- These interface changes are detailed in the updated documentation.

- Reduced the default planner buffer size from 17 to 16. Needed to free
up some memory…

- For increasing the serial TX buffer size from 90 to 104 bytes. The
addition of real-time spindle speeds and accessory enable data required
a bigger buffer. This is to ensure Grbl is performing at optimal levels.

- Refactored parts of the spindle and coolant control code to make it
more consistent to each other and how it was called. It was a little
messy. The changes made it easier to track what each function call was
doing based on what was calling it.

- Created a couple of new get_state functions for the spindle and
coolant. These are called by the accessory state report to look
directly at the pin state, rather than track how it was set. This
guarantees that the state is reported correctly.

- Updated the g-code parser, parking motion, sleep mode, and spindle
stop calls to refactored spindle and coolant code.

- Added a compile-time option to enable homing individual axes, rather
than having only the main homing cycle. The actual use case for this is
pretty rare. It’s not recommended you enable this, unless you have a
specific application for it. Otherwise, just alter the homing cycle
itself.

- Refactored the printFloat() function to not show a decimal point if
there are no trailing values after it. For example, `1.` now shows `1`.

- Fixed an issue regarding spindle speed overrides no being applied to
blocks without motions.

- Removed the toggle_ovr_mask system variable and replaced with
spindle_stop_ovr system variable. Coolant toggles don’t need to be
tracked.

- Updated README
2016-10-17 23:48:25 -06:00

148 lines
6.4 KiB
C

/*
planner.h - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef planner_h
#define planner_h
// The number of linear motions that can be in the plan at any give time
#ifndef BLOCK_BUFFER_SIZE
#ifdef USE_LINE_NUMBERS
#define BLOCK_BUFFER_SIZE 15
#else
#define BLOCK_BUFFER_SIZE 16
#endif
#endif
// Returned status message from planner.
#define PLAN_OK true
#define PLAN_EMPTY_BLOCK false
// Define planner data condition flags. Used to denote running conditions of a block.
#define PL_COND_FLAG_RAPID_MOTION bit(0)
#define PL_COND_FLAG_SYSTEM_MOTION bit(1) // Single motion. Circumvents planner state. Used by home/park.
#define PL_COND_FLAG_NO_FEED_OVERRIDE bit(2) // Motion does not honor feed override.
#define PL_COND_FLAG_INVERSE_TIME bit(3)
#define PL_COND_FLAG_SPINDLE_CW bit(4)
#define PL_COND_FLAG_SPINDLE_CCW bit(5)
#define PL_COND_FLAG_COOLANT_FLOOD bit(6)
#define PL_COND_FLAG_COOLANT_MIST bit(7)
// This struct stores a linear movement of a g-code block motion with its critical "nominal" values
// are as specified in the source g-code.
typedef struct {
// Fields used by the bresenham algorithm for tracing the line
// NOTE: Used by stepper algorithm to execute the block correctly. Do not alter these values.
uint32_t steps[N_AXIS]; // Step count along each axis
uint32_t step_event_count; // The maximum step axis count and number of steps required to complete this block.
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Block condition data to ensure correct execution depending on states and overrides.
uint8_t condition; // Block bitflag variable defining block run conditions. Copied from pl_line_data.
#ifdef USE_LINE_NUMBERS
int32_t line_number; // Block line number for real-time reporting. Copied from pl_line_data.
#endif
// Fields used by the motion planner to manage acceleration. Some of these values may be updated
// by the stepper module during execution of special motion cases for replanning purposes.
float entry_speed_sqr; // The current planned entry speed at block junction in (mm/min)^2
float max_entry_speed_sqr; // Maximum allowable entry speed based on the minimum of junction limit and
// neighboring nominal speeds with overrides in (mm/min)^2
float acceleration; // Axis-limit adjusted line acceleration in (mm/min^2). Does not change.
float millimeters; // The remaining distance for this block to be executed in (mm).
// NOTE: This value may be altered by stepper algorithm during execution.
// Stored rate limiting data used by planner when changes occur.
float max_junction_speed_sqr; // Junction entry speed limit based on direction vectors in (mm/min)^2
float rapid_rate; // Axis-limit adjusted maximum rate for this block direction in (mm/min)
float programmed_rate; // Programmed rate of this block (mm/min).
#ifdef VARIABLE_SPINDLE
// Stored spindle speed data used by spindle overrides and resuming methods.
float spindle_speed; // Block spindle speed. Copied from pl_line_data.
#endif
} plan_block_t;
// Planner data prototype. Must be used when passing new motions to the planner.
typedef struct {
float feed_rate; // Desired feed rate for line motion. Value is ignored, if rapid motion.
float spindle_speed; // Desired spindle speed through line motion.
uint8_t condition; // Bitflag variable to indicate planner conditions. See defines above.
#ifdef USE_LINE_NUMBERS
int32_t line_number; // Desired line number to report when executing.
#endif
} plan_line_data_t;
// Initialize and reset the motion plan subsystem
void plan_reset(); // Reset all
void plan_reset_buffer(); // Reset buffer only.
// Add a new linear movement to the buffer. target[N_AXIS] is the signed, absolute target position
// in millimeters. Feed rate specifies the speed of the motion. If feed rate is inverted, the feed
// rate is taken to mean "frequency" and would complete the operation in 1/feed_rate minutes.
uint8_t plan_buffer_line(float *target, plan_line_data_t *pl_data);
// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
void plan_discard_current_block();
// Gets the planner block for the special system motion cases. (Parking/Homing)
plan_block_t *plan_get_system_motion_block();
// Gets the current block. Returns NULL if buffer empty
plan_block_t *plan_get_current_block();
// Called periodically by step segment buffer. Mostly used internally by planner.
uint8_t plan_next_block_index(uint8_t block_index);
// Called by step segment buffer when computing executing block velocity profile.
float plan_get_exec_block_exit_speed_sqr();
// Called by main program during planner calculations and step segment buffer during initialization.
float plan_compute_profile_nominal_speed(plan_block_t *block);
// Re-calculates buffered motions profile parameters upon a motion-based override change.
void plan_update_velocity_profile_parameters();
// Reset the planner position vector (in steps)
void plan_sync_position();
// Reinitialize plan with a partially completed block
void plan_cycle_reinitialize();
// Returns the number of available blocks are in the planner buffer.
uint8_t plan_get_block_buffer_available();
// Returns the number of active blocks are in the planner buffer.
// NOTE: Deprecated. Not used unless classic status reports are enabled in config.h
uint8_t plan_get_block_buffer_count();
// Returns the status of the block ring buffer. True, if buffer is full.
uint8_t plan_check_full_buffer();
void plan_get_planner_mpos(float *target);
#endif