grbl-LPC-CoreXY/motion_control.c
Simen Svale Skogsrud 9df29ad3b3 version 0.1
2009-01-25 00:48:56 +01:00

339 lines
11 KiB
C

/*
motion_control.c - cartesian robot controller.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* This code was inspired by the Arduino GCode_Interpreter by Mike Ellery. */
#include <avr/io.h>
#include "config.h"
#include "motion_control.h"
#include <util/delay.h>
#include <math.h>
#include <stdlib.h>
#include "nuts_bolts.h"
// position represents the current position of the head measured in steps
// target is the target for the current linear motion
// step_count contains the absolute values of the steps to travel along each axis
// direction is the sign of the motion for each axis (-1: reverse, 0: standby, 1: forward)
#define MODE_AT_REST 0
#define MODE_LINEAR 1
#define MODE_ARC 2
#define MODE_DWELL 3
#define MODE_HOME 4
#define MODE_LIMIT_OVERRUN -1
#define PHASE_HOME_RETURN 0
#define PHASE_HOME_NUDGE 1
#define ONE_MINUTE_OF_MICROSECONDS 60000000
// Parameters when mode is MODE_ARC
struct LinearMotionParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
uint16_t feed_rate;
int32_t target[3], // The target position in absolute steps
step_count[3], // Absolute steps of travel along each axis
counter[3], // A counter used in the bresenham algorithm for line plotting
maximum_steps; // The larges absolute step-count of any axis
};
// Parameters when mode is MODE_LINEAR
struct ArcMotionParameters {
uint32_t radius;
int16_t degrees;
int ccw;
};
struct HomeCycleParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
int8_t phase; // current phase of the home cycle.
int8_t away[3]; // a vector of booleans. True for each axis that is still away.
};
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
read, but lets us initialize the state of the system by just clearing a single, contigous block of memory.
By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM.
*/
struct MotionControlState {
int8_t mode; // The current operation mode
int32_t position[3]; // The current position of the tool in absolute steps
int32_t update_delay_us; // Microseconds between each update in the current mode
union {
struct LinearMotionParameters linear; // variables used in MODE_LINEAR
struct ArcMotionParameters arc; // variables used in MODE_ARC
struct HomeCycleParameters home; // variables used in MODE_HOME
uint32_t dwell_milliseconds; // variable used in MODE_DWELL
int8_t limit_overrun_direction[3]; // variable used in MODE_LIMIT_OVERRUN
};
};
struct MotionControlState state;
int check_limit_switches();
void enable_steppers();
void disable_steppers();
void set_direction_pins(int8_t *direction);
inline void step_steppers(uint8_t *enabled);
void limit_overrun(uint8_t *direction);
int check_limit_switch(int axis);
inline void step_axis(uint8_t axis);
void mc_init()
{
// Initialize state variables
memset(&state, 0, sizeof(state));
// Configure directions of interface pins
STEP_DDR |= STEP_MASK;
DIRECTION_DDR |= DIRECTION_MASK;
LIMIT_DDR &= ~(LIMIT_MASK);
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;
disable_steppers();
}
void limit_overrun(uint8_t *direction)
{
state.mode = MODE_LIMIT_OVERRUN;
memcpy(state.limit_overrun_direction, direction, sizeof(state.limit_overrun_direction));
}
void mc_dwell(uint32_t milliseconds)
{
mc_wait();
state.mode = MODE_DWELL;
state.dwell_milliseconds = milliseconds;
state.update_delay_us = 1000;
}
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
mc_wait();
state.mode = MODE_LINEAR;
state.linear.target[X_AXIS] = trunc(x*X_STEPS_PER_MM);
state.linear.target[Y_AXIS] = trunc(y*Y_STEPS_PER_MM);
state.linear.target[Z_AXIS] = trunc(z*Z_STEPS_PER_MM);
uint8_t axis; // loop variable
// Determine direction and travel magnitude for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
state.linear.step_count[axis] = abs(state.linear.target[axis] - state.position[axis]);
state.linear.direction[axis] = sign(state.linear.step_count[axis]);
}
// Find the magnitude of the axis with the longest travel
state.linear.maximum_steps = max(state.linear.step_count[Z_AXIS],
max(state.linear.step_count[X_AXIS], state.linear.step_count[Y_AXIS]));
// Set up a neat counter for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
state.linear.counter[axis] = -state.linear.maximum_steps/2;
}
// Set our direction pins
set_direction_pins(state.linear.direction);
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
if (invert_feed_rate) {
state.update_delay_us =
(feed_rate*1000000.0)/state.linear.maximum_steps;
} else {
// Ask old Phytagoras how many millimeters our next move is going to take us:
float millimeters_of_travel =
sqrt(pow((X_STEPS_PER_MM*state.linear.step_count[X_AXIS]),2) +
pow((Y_STEPS_PER_MM*state.linear.step_count[Y_AXIS]),2) +
pow((Z_STEPS_PER_MM*state.linear.step_count[Z_AXIS]),2));
state.update_delay_us =
((millimeters_of_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / state.linear.maximum_steps;
}
}
void perform_linear_motion()
{
// Flags to keep track of which axes to step
uint8_t step[3];
uint8_t axis; // loop variable
// Trace the line
clear_vector(step);
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
if (state.linear.target[axis] != state.position[axis])
{
state.linear.counter[axis] += state.linear.step_count[axis];
if (state.linear.counter[axis] > 0)
{
step[axis] = true;
state.linear.counter[axis] -= state.linear.maximum_steps;
state.position[axis] += state.linear.direction[axis];
}
}
}
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
step_steppers(step);
// If we trip any limit switch while moving: Abort, abort!
if (check_limit_switches()) {
limit_overrun(state.linear.direction);
}
_delay_us(state.update_delay_us);
} else {
state.mode = MODE_AT_REST;
}
}
void mc_go_home()
{
state.mode = MODE_HOME;
memset(state.home.direction, -1, sizeof(state.home.direction)); // direction = [-1,-1,-1]
set_direction_pins(state.home.direction);
clear_vector(state.home.away);
}
void perform_go_home()
{
int axis;
if(state.home.phase == PHASE_HOME_RETURN) {
// We are running all axes in reverse until all limit switches are tripped
// Check all limit switches:
for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
state.home.away[axis] |= check_limit_switch(axis);
}
// Step steppers. First retract along Z-axis. Then X and Y.
if(state.home.away[Z_AXIS]) {
step_axis(Z_AXIS);
} else {
// Check if all axes are home
if(!(state.home.away[X_AXIS] || state.home.away[Y_AXIS])) {
// All axes are home, prepare next phase: to nudge the tool carefully out of the limit switches
memset(state.home.direction, 1, sizeof(state.home.direction)); // direction = [1,1,1]
set_direction_pins(state.home.direction);
state.home.phase == PHASE_HOME_NUDGE;
return;
}
step_steppers(state.home.away);
}
} else {
for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
if(check_limit_switch(axis)) {
step_axis(axis);
return;
}
}
// When this code is reached it means all axes are free of their limit-switches. Complete the cycle and rest:
clear_vector(state.position); // By definition this is location [0, 0, 0]
state.mode = MODE_AT_REST;
}
}
void mc_execute() {
enable_steppers();
while(state.mode) {
switch(state.mode) {
case MODE_AT_REST: break;
case MODE_DWELL: _delay_ms(state.dwell_milliseconds); state.mode = MODE_AT_REST; break;
case MODE_LINEAR: perform_linear_motion();
case MODE_HOME: perform_go_home();
}
_delay_us(state.update_delay_us);
}
disable_steppers();
}
void mc_wait() {
return; // No concurrency support yet. So waiting for all to pass is moot.
}
int mc_status()
{
return(state.mode);
}
int check_limit_switches()
{
// Dual read as crude debounce
return((LIMIT_PORT & LIMIT_MASK) | (LIMIT_PORT & LIMIT_MASK));
}
int check_limit_switch(int axis)
{
uint8_t mask = 0;
switch (axis) {
case X_AXIS: mask = 1<<X_LIMIT_BIT; break;
case Y_AXIS: mask = 1<<Y_LIMIT_BIT; break;
case Z_AXIS: mask = 1<<Z_LIMIT_BIT; break;
}
return((LIMIT_PORT&mask) || (LIMIT_PORT&mask));
}
void enable_steppers()
{
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
}
void disable_steppers()
{
STEPPERS_ENABLE_PORT &= ~(1<<STEPPERS_ENABLE_BIT);
}
// Set the direction pins for the stepper motors according to the provided vector.
// direction is an array of three 8 bit integers representing the direction of
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
void set_direction_pins(int8_t *direction)
{
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
int is set when the direction == -1, but is 0 when direction is forward. This
way we can generate the whole direction bit-mask without doing any comparisions
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
*/
uint8_t forward_bits = ~(
((direction[X_AXIS]&128)>>(7-X_DIRECTION_BIT)) |
((direction[Y_AXIS]&128)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&128)>>(7-Z_DIRECTION_BIT))
);
DIRECTION_PORT = DIRECTION_PORT & ~(DIRECTION_MASK) | forward_bits;
}
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
// stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to
// 1, and the rest to 0.
inline void step_steppers(uint8_t *enabled)
{
STEP_PORT |= enabled[X_AXIS]<<X_STEP_BIT | enabled[Y_AXIS]<<Y_STEP_BIT | enabled[Z_AXIS]<<Z_STEP_BIT;
_delay_us(5);
STEP_PORT &= ~STEP_MASK;
}
// Step only one motor
inline void step_axis(uint8_t axis)
{
uint8_t mask = 0;
switch (axis) {
case X_AXIS: mask = 1<<X_STEP_BIT; break;
case Y_AXIS: mask = 1<<Y_STEP_BIT; break;
case Z_AXIS: mask = 1<<Z_STEP_BIT; break;
}
STEP_PORT &= mask;
_delay_us(5);
STEP_PORT &= ~STEP_MASK;
}