grbl-LPC-CoreXY/stepper.c
2009-02-03 23:36:04 +01:00

248 lines
7.3 KiB
C

/*
stepper.c - stepper motor interface
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. The circle buffer implementation gleaned from the wiring_serial library
by David A. Mellis */
#include "stepper.h"
#include "config.h"
#include "nuts_bolts.h"
#include <avr/interrupt.h>
#include "wiring_serial.h"
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define STEP_BUFFER_SIZE 100
volatile uint8_t step_buffer[STEP_BUFFER_SIZE]; // A buffer for step instructions
volatile int step_buffer_head = 0;
volatile int step_buffer_tail = 0;
uint8_t stepper_mode = STEPPER_MODE_STOPPED;
uint8_t echo_steps = true;
// This timer interrupt is executed at the pace set with set_pace. It pops one instruction from
// the step_buffer, executes it. Then it starts timer2 in order to reset the motor port after
// five microseconds.
SIGNAL(SIG_OUTPUT_COMPARE1A)
{
if (step_buffer_head != step_buffer_tail) {
// Set the direction pins a nanosecond or two before you step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (step_buffer[step_buffer_tail] & DIRECTION_MASK);
// Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | step_buffer[step_buffer_tail];
// Reset and start timer 2 which will reset the motor port after 5 microsecond
TCNT2 = 0; // reset counter
OCR2A = 5*TICKS_PER_MICROSECOND; // set the time
TIMSK2 |= (1<<OCIE2A); // enable interrupt
// move the step buffer tail to the next instruction
step_buffer_tail = (step_buffer_tail + 1) % STEP_BUFFER_SIZE;
}
}
// This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets
// the motor port after a short period (5us) completing one step cycle.
SIGNAL(SIG_OUTPUT_COMPARE2A)
{
STEPPING_PORT = STEPPING_PORT & ~STEP_MASK; // reset stepping pins (leave the direction pins)
TIMSK2 &= ~(1<<OCIE2A); // disable this timer interrupt until next time
}
// Initialize and start the stepper motor subsystem
void st_init()
{
// Configure directions of interface pins
STEPPING_DDR |= STEPPING_MASK;
LIMIT_DDR &= ~(LIMIT_MASK);
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Configure Timer 2
TCCR2A = 0; // Normal operation
TCCR2B = 1<<CS20; // Full speed, no prescaler
TIMSK2 = 0; // All interrupts disabled
sei();
// start off with a slow pace
st_set_pace(20000);
st_start();
}
void st_buffer_step(uint8_t motor_port_bits)
{
if (echo_steps) {
printByte('!'+motor_port_bits);
// printIntegerInBase(motor_port_bits,2);printByte('\r');printByte('\n');
}
int i = (step_buffer_head + 1) % STEP_BUFFER_SIZE;
// If the buffer is full: good! That means we are well ahead of the robot.
// Nap until there is room for more steps.
while(step_buffer_tail == i) { sleep_mode(); }
step_buffer[step_buffer_head] = motor_port_bits;
step_buffer_head = i;
}
// Block until all buffered steps are executed
void st_synchronize()
{
if (stepper_mode == STEPPER_MODE_RUNNING) {
while(step_buffer_tail != step_buffer_head) { sleep_mode(); }
} else {
st_flush();
}
}
// Cancel all pending steps
void st_flush()
{
cli();
step_buffer_tail = step_buffer_head;
sei();
}
// Start the stepper subsystem
void st_start()
{
// Enable timer interrupt
TIMSK1 |= (1<<OCIE1A);
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
stepper_mode = STEPPER_MODE_RUNNING;
}
// Execute all buffered steps, then stop the stepper subsystem
inline void st_stop()
{
st_synchronize();
TIMSK1 &= ~(1<<OCIE1A);
STEPPERS_ENABLE_PORT &= ~(1<<STEPPERS_ENABLE_BIT);
stepper_mode = STEPPER_MODE_STOPPED;
}
void st_set_pace(uint32_t microseconds)
{
printString("pace = ");
printInteger(microseconds);
printString("\n\r");
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;
uint16_t ceiling;
uint16_t prescaler;
if (ticks <= 0xffffL) {
ceiling = ticks;
prescaler = 0; // prescaler: 0
} else if (ticks <= 0x7ffffL) {
ceiling = ticks >> 3;
prescaler = 1; // prescaler: 8
} else if (ticks <= 0x3fffffL) {
ceiling = ticks >> 6;
prescaler = 2; // prescaler: 64
} else if (ticks <= 0xffffffL) {
ceiling = (ticks >> 8);
prescaler = 3; // prescaler: 256
} else if (ticks <= 0x3ffffffL) {
ceiling = (ticks >> 10);
prescaler = 4; // prescaler: 1024
} else {
// Okay, that was slower than we actually go. Just set the slowest speed
ceiling = 0xffff;
prescaler = 4;
}
// Set prescaler
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | ((prescaler+1)<<CS10);
// Set ceiling
OCR1A = ceiling;
}
int check_limit_switches()
{
// Dual read as crude debounce
return((LIMIT_PORT & LIMIT_MASK) | (LIMIT_PORT & LIMIT_MASK));
}
int check_limit_switch(int axis)
{
uint8_t mask = 0;
switch (axis) {
case X_AXIS: mask = 1<<X_LIMIT_BIT; break;
case Y_AXIS: mask = 1<<Y_LIMIT_BIT; break;
case Z_AXIS: mask = 1<<Z_LIMIT_BIT; break;
}
return((LIMIT_PORT&mask) || (LIMIT_PORT&mask));
}
// void perform_go_home()
// {
// int axis;
// if(stepper_mode.home.phase == PHASE_HOME_RETURN) {
// // We are running all axes in reverse until all limit switches are tripped
// // Check all limit switches:
// for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
// stepper_mode.home.away[axis] |= check_limit_switch(axis);
// }
// // Step steppers. First retract along Z-axis. Then X and Y.
// if(stepper_mode.home.away[Z_AXIS]) {
// step_axis(Z_AXIS);
// } else {
// // Check if all axes are home
// if(!(stepper_mode.home.away[X_AXIS] || stepper_mode.home.away[Y_AXIS])) {
// // All axes are home, prepare next phase: to nudge the tool carefully out of the limit switches
// memset(stepper_mode.home.direction, 1, sizeof(stepper_mode.home.direction)); // direction = [1,1,1]
// set_direction_bits(stepper_mode.home.direction);
// stepper_mode.home.phase == PHASE_HOME_NUDGE;
// return;
// }
// step_steppers(stepper_mode.home.away);
// }
// } else {
// for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
// if(check_limit_switch(axis)) {
// step_axis(axis);
// return;
// }
// }
// // When this code is reached it means all axes are free of their limit-switches. Complete the cycle and rest:
// clear_vector(stepper_mode.position); // By definition this is location [0, 0, 0]
// stepper_mode.mode = MODE_AT_REST;
// }
// }
void st_go_home()
{
// Todo: Perform the homing cycle
}
void st_set_echo(int value)
{
echo_steps = value;
}