grbl-LPC-CoreXY/probe.c
Sonny Jeon 7e67395463 Updated variable spindle and new probing. Minor bug fixes.
- Minor bug fix for variable spindle PWM output. Values smaller than
the minimum RPM for the spindle would overflow the PWM value. Thanks
Rob!

- Created an optional minimum spindle PWM low-mark value as a
compile-time option. This is for special circumstances when the PWM has
to be at a certain level to be read by the spindle controller.

- Refactored the new probing commands (G38.3, G38.4, G38.5) code to
work better with the rest of Grbl’s systems.

- Refactored mc_probe() and mc_arc() to accept the mode of the command,
i.e. clockwise vs counter, toward vs away, etc. This is to make these
functions independent of gcode state variables.

- Removed the pull off motion in the probing cycle. This is not an
official operation and was added for user simplicity, but wrongly did
so. So bye bye.

- Created a configure probe invert mask function to handle the
different probe pin setting and probing cycle modes with a single mask.

 - Minor bug fix with reporting motion modes via $G. G38.2 wasn’t
showing up. It now does, along with the other new probing commands.

- Refactored some of the new pin configurations for the future of Grbl.

-
2014-10-01 20:22:16 -06:00

70 lines
2.5 KiB
C

/*
probe.c - code pertaining to probing methods
Part of Grbl v0.9
Copyright (c) 2014 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "system.h"
#include "settings.h"
#include "probe.h"
// Inverts the probe pin state depending on user settings and probing cycle mode.
uint8_t probe_invert_mask;
// Probe pin initialization routine.
void probe_init()
{
PROBE_DDR &= ~(PROBE_MASK); // Configure as input pins
if (bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN)) {
PROBE_PORT &= ~(PROBE_MASK); // Normal low operation. Requires external pull-down.
} else {
PROBE_PORT |= PROBE_MASK; // Enable internal pull-up resistors. Normal high operation.
}
// probe_configure_invert_mask(false); // Initialize invert mask. Not required. Updated when in-use.
}
// Called by probe_init() and the mc_probe() routines. Sets up the probe pin invert mask to
// appropriately set the pin logic according to setting for normal-high/normal-low operation
// and the probing cycle modes for toward-workpiece/away-from-workpiece.
void probe_configure_invert_mask(uint8_t is_probe_away)
{
probe_invert_mask = 0; // Initialize as zero.
if (bit_isfalse(settings.flags,BITFLAG_INVERT_PROBE_PIN)) { probe_invert_mask ^= PROBE_MASK; }
if (is_probe_away) { probe_invert_mask ^= PROBE_MASK; }
}
// Returns the probe pin state. Triggered = true. Called by gcode parser and probe state monitor.
uint8_t probe_get_state() { return((PROBE_PIN & PROBE_MASK) ^ probe_invert_mask); }
// Monitors probe pin state and records the system position when detected. Called by the
// stepper ISR per ISR tick.
// NOTE: This function must be extremely efficient as to not bog down the stepper ISR.
void probe_state_monitor()
{
if (sys.probe_state == PROBE_ACTIVE) {
if (probe_get_state()) {
sys.probe_state = PROBE_OFF;
memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS);
bit_true(sys.execute, EXEC_FEED_HOLD);
}
}
}