grbl-LPC-CoreXY/serial.c
Sonny Jeon cc9afdc195 Lots of re-organization and cleaning-up. Some bug fixes.
- Added a new source and header file called system. These files contain
the system commands and variables, as well as all of the system headers
and standard libraries Grbl uses. Centralizing some of the code.

- Re-organized the include headers throughout the source code.

- ENABLE_M7 define was missing from config.h. Now there.

- SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No
uncommenting to prevent user issues. Minimum spindle RPM now provides
the lower, near 0V, scale adjustment, i.e. some spindles can go really
slow so why use up our 256 voltage bins for them?

- Remove some persistent variables from coolant and spindle control.
They were redundant.

- Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have
been there.

- Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing.
Before we had issues with performance, no longer.

- Fixed a bug with the hard limits and the software debounce feature
enabled. The invert limit pin setting wasn’t honored.

- Fixed a bug with the homing direction mask. Now is like it used to
be. At least for now.

- Re-organized main.c to serve as only as the reset/initialization
routine. Makes things a little bit clearer in terms of execution
procedures.

- Re-organized protocol.c as the overall master control unit for
execution procedures. Not quite there yet, but starting to make a
little more sense in how things are run.

- Removed updating of old settings records. So many new settings have
been added that it’s not worth adding the code to migrate old user
settings.

- Tweaked spindle_control.c a bit and made it more clear and consistent
with other parts of Grbl.

- Tweaked the stepper disable bit code in stepper.c. Requires less
flash memory.
2014-01-10 20:22:10 -07:00

193 lines
5.4 KiB
C

/*
serial.c - Low level functions for sending and recieving bytes via the serial port
Part of Grbl
Copyright (c) 2011-2014 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* This code was initially inspired by the wiring_serial module by David A. Mellis which
used to be a part of the Arduino project. */
#include <avr/interrupt.h>
#include "system.h"
#include "serial.h"
#include "motion_control.h"
#include "protocol.h"
uint8_t rx_buffer[RX_BUFFER_SIZE];
uint8_t rx_buffer_head = 0;
volatile uint8_t rx_buffer_tail = 0;
uint8_t tx_buffer[TX_BUFFER_SIZE];
uint8_t tx_buffer_head = 0;
volatile uint8_t tx_buffer_tail = 0;
#ifdef ENABLE_XONXOFF
volatile uint8_t flow_ctrl = XON_SENT; // Flow control state variable
// Returns the number of bytes in the RX buffer. This replaces a typical byte counter to prevent
// the interrupt and main programs from writing to the counter at the same time.
static uint8_t get_rx_buffer_count()
{
if (rx_buffer_head == rx_buffer_tail) { return(0); }
if (rx_buffer_head < rx_buffer_tail) { return(rx_buffer_tail-rx_buffer_head); }
return (RX_BUFFER_SIZE - (rx_buffer_head-rx_buffer_tail));
}
#endif
void serial_init()
{
// Set baud rate
#if BAUD_RATE < 57600
uint16_t UBRR0_value = ((F_CPU / (8L * BAUD_RATE)) - 1)/2 ;
UCSR0A &= ~(1 << U2X0); // baud doubler off - Only needed on Uno XXX
#else
uint16_t UBRR0_value = ((F_CPU / (4L * BAUD_RATE)) - 1)/2;
UCSR0A |= (1 << U2X0); // baud doubler on for high baud rates, i.e. 115200
#endif
UBRR0H = UBRR0_value >> 8;
UBRR0L = UBRR0_value;
// enable rx and tx
UCSR0B |= 1<<RXEN0;
UCSR0B |= 1<<TXEN0;
// enable interrupt on complete reception of a byte
UCSR0B |= 1<<RXCIE0;
// defaults to 8-bit, no parity, 1 stop bit
}
void serial_write(uint8_t data) {
// Calculate next head
uint8_t next_head = tx_buffer_head + 1;
if (next_head == TX_BUFFER_SIZE) { next_head = 0; }
// Wait until there is space in the buffer
while (next_head == tx_buffer_tail) {
if (sys.execute & EXEC_RESET) { return; } // Only check for abort to avoid an endless loop.
}
// Store data and advance head
tx_buffer[tx_buffer_head] = data;
tx_buffer_head = next_head;
// Enable Data Register Empty Interrupt to make sure tx-streaming is running
UCSR0B |= (1 << UDRIE0);
}
// Data Register Empty Interrupt handler
ISR(SERIAL_UDRE)
{
uint8_t tail = tx_buffer_tail; // Temporary tx_buffer_tail (to optimize for volatile)
#ifdef ENABLE_XONXOFF
if (flow_ctrl == SEND_XOFF) {
UDR0 = XOFF_CHAR;
flow_ctrl = XOFF_SENT;
} else if (flow_ctrl == SEND_XON) {
UDR0 = XON_CHAR;
flow_ctrl = XON_SENT;
} else
#endif
{
// Send a byte from the buffer
UDR0 = tx_buffer[tail];
// Update tail position
tail++;
if (tail == TX_BUFFER_SIZE) { tail = 0; }
tx_buffer_tail = tail;
}
// Turn off Data Register Empty Interrupt to stop tx-streaming if this concludes the transfer
if (tail == tx_buffer_head) { UCSR0B &= ~(1 << UDRIE0); }
}
uint8_t serial_read()
{
uint8_t tail = rx_buffer_tail; // Temporary rx_buffer_tail (to optimize for volatile)
if (rx_buffer_head == tail) {
return SERIAL_NO_DATA;
} else {
uint8_t data = rx_buffer[tail];
tail++;
if (tail == RX_BUFFER_SIZE) { tail = 0; }
rx_buffer_tail = tail;
#ifdef ENABLE_XONXOFF
if ((get_rx_buffer_count() < RX_BUFFER_LOW) && flow_ctrl == XOFF_SENT) {
flow_ctrl = SEND_XON;
UCSR0B |= (1 << UDRIE0); // Force TX
}
#endif
return data;
}
}
ISR(SERIAL_RX)
{
uint8_t data = UDR0;
uint8_t next_head;
// Pick off runtime command characters directly from the serial stream. These characters are
// not passed into the buffer, but these set system state flag bits for runtime execution.
switch (data) {
case CMD_STATUS_REPORT: sys.execute |= EXEC_STATUS_REPORT; break; // Set as true
case CMD_CYCLE_START: sys.execute |= EXEC_CYCLE_START; break; // Set as true
case CMD_FEED_HOLD: sys.execute |= EXEC_FEED_HOLD; break; // Set as true
case CMD_RESET: mc_reset(); break; // Call motion control reset routine.
default: // Write character to buffer
next_head = rx_buffer_head + 1;
if (next_head == RX_BUFFER_SIZE) { next_head = 0; }
// Write data to buffer unless it is full.
if (next_head != rx_buffer_tail) {
rx_buffer[rx_buffer_head] = data;
rx_buffer_head = next_head;
#ifdef ENABLE_XONXOFF
if ((get_rx_buffer_count() >= RX_BUFFER_FULL) && flow_ctrl == XON_SENT) {
flow_ctrl = SEND_XOFF;
UCSR0B |= (1 << UDRIE0); // Force TX
}
#endif
}
}
}
void serial_reset_read_buffer()
{
rx_buffer_tail = rx_buffer_head;
#ifdef ENABLE_XONXOFF
flow_ctrl = XON_SENT;
#endif
}