grbl-LPC-CoreXY/motion_control.h
Sonny Jeon 74b2af3c2f Minor changes and added notes to soft limits routines.
- Changed up mc_line to accept an array rather than individual x,y,z
coordinates. Makes some of the position data handling more effective,
especially for a 4th-axis later on.

- Changed up some soft limits variable names.
2013-03-01 09:55:10 -07:00

50 lines
1.9 KiB
C

/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2012 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef motion_control_h
#define motion_control_h
#include <avr/io.h>
#include "planner.h"
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time.
void mc_line(float *target, float feed_rate, uint8_t invert_feed_rate);
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction.
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, uint8_t invert_feed_rate, float radius, uint8_t isclockwise);
// Dwell for a specific number of seconds
void mc_dwell(float seconds);
// Perform homing cycle to locate machine zero. Requires limit switches.
void mc_go_home();
// Performs system reset. If in motion state, kills all motion and sets system alarm.
void mc_reset();
#endif