grbl-LPC-CoreXY/settings.c
Sonny J 5c2150daa9 Significantly improved junction control and fixed computation bugs in planner
- Junction jerk now re-defined as junction_deviation. The distance from
the junction to the edge of a circle tangent to both previous and
current path lines. The circle radii is used to compute the maximum
junction velocity by centripetal acceleration. More robust and
simplified way to compute jerk.   - Fixed bugs related to entry and exit
factors. They were computed based on the current nominal speeds but not
when computing exit factors for neighboring blocks. Removed factors and
replaced with entry speeds only. Factors now only computed for stepper
trapezoid rate conversions.  - Misc: Added min(), next_block_index,
prev_block_index functions for clarity.
2011-09-03 15:31:48 -06:00

179 lines
6.3 KiB
C

/*
settings.c - eeprom configuration handling
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include <math.h>
#include "nuts_bolts.h"
#include "settings.h"
#include "eeprom.h"
#include "print.h"
#include <avr/pgmspace.h>
#include "protocol.h"
#include "config.h"
settings_t settings;
// Version 1 outdated settings record
typedef struct {
double steps_per_mm[3];
uint8_t microsteps;
uint8_t pulse_microseconds;
double default_feed_rate;
double default_seek_rate;
uint8_t invert_mask;
double mm_per_arc_segment;
} settings_v1_t;
// Default settings (used when resetting eeprom-settings)
#define MICROSTEPS 8
#define DEFAULT_X_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define DEFAULT_Y_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define DEFAULT_Z_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define DEFAULT_STEP_PULSE_MICROSECONDS 30
#define DEFAULT_MM_PER_ARC_SEGMENT 0.1
#define DEFAULT_RAPID_FEEDRATE 500.0 // in millimeters per minute
#define DEFAULT_FEEDRATE 500.0
#define DEFAULT_ACCELERATION (DEFAULT_FEEDRATE/10.0)
#define DEFAULT_JUNCTION_DEVIATION 0.1
#define DEFAULT_STEPPING_INVERT_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT))
void settings_reset() {
settings.steps_per_mm[X_AXIS] = DEFAULT_X_STEPS_PER_MM;
settings.steps_per_mm[Y_AXIS] = DEFAULT_Y_STEPS_PER_MM;
settings.steps_per_mm[Z_AXIS] = DEFAULT_Z_STEPS_PER_MM;
settings.pulse_microseconds = DEFAULT_STEP_PULSE_MICROSECONDS;
settings.default_feed_rate = DEFAULT_FEEDRATE;
settings.default_seek_rate = DEFAULT_RAPID_FEEDRATE;
settings.acceleration = DEFAULT_ACCELERATION;
settings.mm_per_arc_segment = DEFAULT_MM_PER_ARC_SEGMENT;
settings.invert_mask = DEFAULT_STEPPING_INVERT_MASK;
settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION;
}
void settings_dump() {
printPgmString(PSTR("$0 = ")); printFloat(settings.steps_per_mm[X_AXIS]);
printPgmString(PSTR(" (steps/mm x)\r\n$1 = ")); printFloat(settings.steps_per_mm[Y_AXIS]);
printPgmString(PSTR(" (steps/mm y)\r\n$2 = ")); printFloat(settings.steps_per_mm[Z_AXIS]);
printPgmString(PSTR(" (steps/mm z)\r\n$3 = ")); printInteger(settings.pulse_microseconds);
printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate);
printPgmString(PSTR(" (mm/min default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate);
printPgmString(PSTR(" (mm/min default seek rate)\r\n$6 = ")); printFloat(settings.mm_per_arc_segment);
printPgmString(PSTR(" (mm/arc segment)\r\n$7 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2);
printPgmString(PSTR(")\r\n$8 = ")); printFloat(settings.acceleration);
printPgmString(PSTR(" (acceleration in mm/sec^2)\r\n$9 = ")); printFloat(settings.junction_deviation);
printPgmString(PSTR(" (junction deviation for cornering in mm)"));
printPgmString(PSTR("\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n"));
}
// Parameter lines are on the form '$4=374.3' or '$' to dump current settings
uint8_t settings_execute_line(char *line) {
uint8_t char_counter = 1;
double parameter, value;
if(line[0] != '$') {
return(STATUS_UNSUPPORTED_STATEMENT);
}
if(line[char_counter] == 0) {
settings_dump(); return(STATUS_OK);
}
if(!read_double(line, &char_counter, &parameter)) {
return(STATUS_BAD_NUMBER_FORMAT);
};
if(line[char_counter++] != '=') {
return(STATUS_UNSUPPORTED_STATEMENT);
}
if(!read_double(line, &char_counter, &value)) {
return(STATUS_BAD_NUMBER_FORMAT);
}
if(line[char_counter] != 0) {
return(STATUS_UNSUPPORTED_STATEMENT);
}
settings_store_setting(parameter, value);
return(STATUS_OK);
}
void write_settings() {
eeprom_put_char(0, SETTINGS_VERSION);
memcpy_to_eeprom_with_checksum(1, (char*)&settings, sizeof(settings_t));
}
int read_settings() {
// Check version-byte of eeprom
uint8_t version = eeprom_get_char(0);
if (version == SETTINGS_VERSION) {
// Read settings-record and check checksum
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, 1, sizeof(settings_t)))) {
return(false);
}
} else if (version == 1) {
// Migrate from old settings version
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, 1, sizeof(settings_v1_t)))) {
return(false);
}
settings.acceleration = DEFAULT_ACCELERATION;
settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION;
} else {
return(false);
}
return(true);
}
// A helper method to set settings from command line
void settings_store_setting(int parameter, double value) {
switch(parameter) {
case 0: case 1: case 2:
if (value <= 0.0) {
printPgmString(PSTR("Steps/mm must be > 0.0\r\n"));
return;
}
settings.steps_per_mm[parameter] = value; break;
case 3:
if (value < 3) {
printPgmString(PSTR("Step pulse must be >= 3 microseconds\r\n"));
return;
}
settings.pulse_microseconds = round(value); break;
case 4: settings.default_feed_rate = value; break;
case 5: settings.default_seek_rate = value; break;
case 6: settings.mm_per_arc_segment = value; break;
case 7: settings.invert_mask = trunc(value); break;
case 8: settings.acceleration = value; break;
case 9: settings.junction_deviation = fabs(value); break;
default:
printPgmString(PSTR("Unknown parameter\r\n"));
return;
}
write_settings();
printPgmString(PSTR("Stored new setting\r\n"));
}
// Initialize the config subsystem
void settings_init() {
if(read_settings()) {
printPgmString(PSTR("'$' to dump current settings\r\n"));
} else {
printPgmString(PSTR("Warning: Failed to read EEPROM settings. Using defaults.\r\n"));
settings_reset();
write_settings();
settings_dump();
}
}