grbl-LPC-CoreXY/grbl/settings.c
Sonny Jeon b3a53a4683 v1.0 Beta Release.
- Tons of new stuff in this release, which is fairly stable and well
tested. However, much more is coming soon!

- Real-time parking motion with safety door. When this compile option
is enabled, an opened safety door will cause Grbl to automatically feed
hold, retract, de-energize the spindle/coolant, and parks near Z max.
After the door is closed and resume is commanded, this reverses and the
program continues as if nothing happened. This is also highly
configurable. See config.h for details.

- New spindle max and min rpm ‘$’ settings! This has been requested
often. Grbl will output 5V when commanded to turn on the spindle at its
max rpm, and 0.02V with min rpm. The voltage and the rpm range are
linear to each other. This should help users tweak their settings to
get close to true rpm’s.

- If the new max rpm ‘$’ setting is set = 0 or less than min rpm, the
spindle speed PWM pin will act like a regular on/off spindle enable
pin. On pin D11.

- BEWARE: Your old EEPROM settings will be wiped! The new spindle rpm
settings require a new settings version, so Grbl will automatically
wipe and restore the EEPROM with the new defaults.

- Control pin can now be inverted individually with a
CONTROL_INVERT_MASK in the cpu_map header file. Not typical for users
to need this, but handy to have.

- Fixed bug when Grbl receive too many characters in a line and
overflows. Previously it would respond with an error per overflow
character and another acknowledge upon an EOL character. This broke the
streaming protocol. Now fixed to only respond with an error after an
EOL character.

- Fixed a bug with the safety door during an ALARM mode. You now can’t
home or unlock the axes until the safety door has been closed. This is
for safety reasons (obviously.)

- Tweaked some the Mega2560 cpu_map settings . Increased segment buffer
size and fixed the spindle PWM settings to output at a higher PWM
frequency.

- Generalized the delay function used by G4 delay for use by parking
motion. Allows non-blocking status reports and real-time control during
re-energizing of the spindle and coolant.

- Added spindle rpm max and min defaults to default.h files.

- Added a new print float for rpm values.
2015-08-27 21:37:19 -06:00

330 lines
12 KiB
C

/*
settings.c - eeprom configuration handling
Part of Grbl
Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
settings_t settings;
// Method to store startup lines into EEPROM
void settings_store_startup_line(uint8_t n, char *line)
{
uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
memcpy_to_eeprom_with_checksum(addr,(char*)line, LINE_BUFFER_SIZE);
}
// Method to store build info into EEPROM
void settings_store_build_info(char *line)
{
memcpy_to_eeprom_with_checksum(EEPROM_ADDR_BUILD_INFO,(char*)line, LINE_BUFFER_SIZE);
}
// Method to store coord data parameters into EEPROM
void settings_write_coord_data(uint8_t coord_select, float *coord_data)
{
uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
memcpy_to_eeprom_with_checksum(addr,(char*)coord_data, sizeof(float)*N_AXIS);
}
// Method to store Grbl global settings struct and version number into EEPROM
void write_global_settings()
{
eeprom_put_char(0, SETTINGS_VERSION);
memcpy_to_eeprom_with_checksum(EEPROM_ADDR_GLOBAL, (char*)&settings, sizeof(settings_t));
}
// Method to restore EEPROM-saved Grbl global settings back to defaults.
void settings_restore(uint8_t restore_flag) {
if (restore_flag & SETTINGS_RESTORE_DEFAULTS) {
settings.pulse_microseconds = DEFAULT_STEP_PULSE_MICROSECONDS;
settings.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME;
settings.step_invert_mask = DEFAULT_STEPPING_INVERT_MASK;
settings.dir_invert_mask = DEFAULT_DIRECTION_INVERT_MASK;
settings.status_report_mask = DEFAULT_STATUS_REPORT_MASK;
settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION;
settings.arc_tolerance = DEFAULT_ARC_TOLERANCE;
settings.rpm_max = DEFAULT_SPINDLE_RPM_MAX;
settings.rpm_min = DEFAULT_SPINDLE_RPM_MIN;
settings.homing_dir_mask = DEFAULT_HOMING_DIR_MASK;
settings.homing_feed_rate = DEFAULT_HOMING_FEED_RATE;
settings.homing_seek_rate = DEFAULT_HOMING_SEEK_RATE;
settings.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY;
settings.homing_pulloff = DEFAULT_HOMING_PULLOFF;
settings.flags = 0;
if (DEFAULT_REPORT_INCHES) { settings.flags |= BITFLAG_REPORT_INCHES; }
if (DEFAULT_INVERT_ST_ENABLE) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
if (DEFAULT_INVERT_LIMIT_PINS) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; }
if (DEFAULT_SOFT_LIMIT_ENABLE) { settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; }
if (DEFAULT_HARD_LIMIT_ENABLE) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
if (DEFAULT_HOMING_ENABLE) { settings.flags |= BITFLAG_HOMING_ENABLE; }
settings.steps_per_mm[X_AXIS] = DEFAULT_X_STEPS_PER_MM;
settings.steps_per_mm[Y_AXIS] = DEFAULT_Y_STEPS_PER_MM;
settings.steps_per_mm[Z_AXIS] = DEFAULT_Z_STEPS_PER_MM;
settings.max_rate[X_AXIS] = DEFAULT_X_MAX_RATE;
settings.max_rate[Y_AXIS] = DEFAULT_Y_MAX_RATE;
settings.max_rate[Z_AXIS] = DEFAULT_Z_MAX_RATE;
settings.acceleration[X_AXIS] = DEFAULT_X_ACCELERATION;
settings.acceleration[Y_AXIS] = DEFAULT_Y_ACCELERATION;
settings.acceleration[Z_AXIS] = DEFAULT_Z_ACCELERATION;
settings.max_travel[X_AXIS] = (-DEFAULT_X_MAX_TRAVEL);
settings.max_travel[Y_AXIS] = (-DEFAULT_Y_MAX_TRAVEL);
settings.max_travel[Z_AXIS] = (-DEFAULT_Z_MAX_TRAVEL);
write_global_settings();
}
if (restore_flag & SETTINGS_RESTORE_PARAMETERS) {
uint8_t idx;
float coord_data[N_AXIS];
memset(&coord_data, 0, sizeof(coord_data));
for (idx=0; idx <= SETTING_INDEX_NCOORD; idx++) { settings_write_coord_data(idx, coord_data); }
}
if (restore_flag & SETTINGS_RESTORE_STARTUP_LINES) {
#if N_STARTUP_LINE > 0
eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK, 0);
#endif
#if N_STARTUP_LINE > 1
eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+1), 0);
#endif
}
if (restore_flag & SETTINGS_RESTORE_BUILD_INFO) { eeprom_put_char(EEPROM_ADDR_BUILD_INFO , 0); }
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t settings_read_startup_line(uint8_t n, char *line)
{
uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
if (!(memcpy_from_eeprom_with_checksum((char*)line, addr, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0; // Empty line
settings_store_startup_line(n, line);
return(false);
}
return(true);
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t settings_read_build_info(char *line)
{
if (!(memcpy_from_eeprom_with_checksum((char*)line, EEPROM_ADDR_BUILD_INFO, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0; // Empty line
settings_store_build_info(line);
return(false);
}
return(true);
}
// Read selected coordinate data from EEPROM. Updates pointed coord_data value.
uint8_t settings_read_coord_data(uint8_t coord_select, float *coord_data)
{
uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
if (!(memcpy_from_eeprom_with_checksum((char*)coord_data, addr, sizeof(float)*N_AXIS))) {
// Reset with default zero vector
clear_vector_float(coord_data);
settings_write_coord_data(coord_select,coord_data);
return(false);
}
return(true);
}
// Reads Grbl global settings struct from EEPROM.
uint8_t read_global_settings() {
// Check version-byte of eeprom
uint8_t version = eeprom_get_char(0);
if (version == SETTINGS_VERSION) {
// Read settings-record and check checksum
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, EEPROM_ADDR_GLOBAL, sizeof(settings_t)))) {
return(false);
}
} else {
return(false);
}
return(true);
}
// A helper method to set settings from command line
uint8_t settings_store_global_setting(uint8_t parameter, float value) {
if (value < 0.0) { return(STATUS_NEGATIVE_VALUE); }
if (parameter >= AXIS_SETTINGS_START_VAL) {
// Store axis configuration. Axis numbering sequence set by AXIS_SETTING defines.
// NOTE: Ensure the setting index corresponds to the report.c settings printout.
parameter -= AXIS_SETTINGS_START_VAL;
uint8_t set_idx = 0;
while (set_idx < AXIS_N_SETTINGS) {
if (parameter < N_AXIS) {
// Valid axis setting found.
switch (set_idx) {
case 0:
#ifdef MAX_STEP_RATE_HZ
if (value*settings.max_rate[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); }
#endif
settings.steps_per_mm[parameter] = value;
break;
case 1:
#ifdef MAX_STEP_RATE_HZ
if (value*settings.steps_per_mm[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); }
#endif
settings.max_rate[parameter] = value;
break;
case 2: settings.acceleration[parameter] = value*60*60; break; // Convert to mm/min^2 for grbl internal use.
case 3: settings.max_travel[parameter] = -value; break; // Store as negative for grbl internal use.
}
break; // Exit while-loop after setting has been configured and proceed to the EEPROM write call.
} else {
set_idx++;
// If axis index greater than N_AXIS or setting index greater than number of axis settings, error out.
if ((parameter < AXIS_SETTINGS_INCREMENT) || (set_idx == AXIS_N_SETTINGS)) { return(STATUS_INVALID_STATEMENT); }
parameter -= AXIS_SETTINGS_INCREMENT;
}
}
} else {
// Store non-axis Grbl settings
uint8_t int_value = trunc(value);
switch(parameter) {
case 0:
if (int_value < 3) { return(STATUS_SETTING_STEP_PULSE_MIN); }
settings.pulse_microseconds = int_value; break;
case 1: settings.stepper_idle_lock_time = int_value; break;
case 2:
settings.step_invert_mask = int_value;
st_generate_step_dir_invert_masks(); // Regenerate step and direction port invert masks.
break;
case 3:
settings.dir_invert_mask = int_value;
st_generate_step_dir_invert_masks(); // Regenerate step and direction port invert masks.
break;
case 4: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
else { settings.flags &= ~BITFLAG_INVERT_ST_ENABLE; }
break;
case 5: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; }
else { settings.flags &= ~BITFLAG_INVERT_LIMIT_PINS; }
break;
case 6: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; }
else { settings.flags &= ~BITFLAG_INVERT_PROBE_PIN; }
break;
case 10: settings.status_report_mask = int_value; break;
case 11: settings.junction_deviation = value; break;
case 12: settings.arc_tolerance = value; break;
case 13:
if (int_value) { settings.flags |= BITFLAG_REPORT_INCHES; }
else { settings.flags &= ~BITFLAG_REPORT_INCHES; }
break;
case 20:
if (int_value) {
if (bit_isfalse(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SOFT_LIMIT_ERROR); }
settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE;
} else { settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; }
break;
case 21:
if (int_value) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
else { settings.flags &= ~BITFLAG_HARD_LIMIT_ENABLE; }
limits_init(); // Re-init to immediately change. NOTE: Nice to have but could be problematic later.
break;
case 22:
if (int_value) { settings.flags |= BITFLAG_HOMING_ENABLE; }
else {
settings.flags &= ~BITFLAG_HOMING_ENABLE;
settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; // Force disable soft-limits.
}
break;
case 23: settings.homing_dir_mask = int_value; break;
case 24: settings.homing_feed_rate = value; break;
case 25: settings.homing_seek_rate = value; break;
case 26: settings.homing_debounce_delay = int_value; break;
case 27: settings.homing_pulloff = value; break;
case 30: settings.rpm_max = value; break;
case 31: settings.rpm_min = value; break;
default:
return(STATUS_INVALID_STATEMENT);
}
}
write_global_settings();
return(STATUS_OK);
}
// Initialize the config subsystem
void settings_init() {
if(!read_global_settings()) {
report_status_message(STATUS_SETTING_READ_FAIL);
settings_restore(SETTINGS_RESTORE_ALL); // Force restore all EEPROM data.
report_grbl_settings();
}
// NOTE: Checking paramater data, startup lines, and build info string should be done here,
// but it seems fairly redundant. Each of these can be manually checked and reset or restored.
// Check all parameter data into a dummy variable. If error, reset to zero, otherwise do nothing.
// float coord_data[N_AXIS];
// uint8_t i;
// for (i=0; i<=SETTING_INDEX_NCOORD; i++) {
// if (!settings_read_coord_data(i, coord_data)) {
// report_status_message(STATUS_SETTING_READ_FAIL);
// }
// }
// NOTE: Startup lines are checked and executed by protocol_main_loop at the end of initialization.
}
// Returns step pin mask according to Grbl internal axis indexing.
uint8_t get_step_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == X_AXIS ) { return((1<<X_STEP_BIT)); }
if ( axis_idx == Y_AXIS ) { return((1<<Y_STEP_BIT)); }
return((1<<Z_STEP_BIT));
}
// Returns direction pin mask according to Grbl internal axis indexing.
uint8_t get_direction_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == X_AXIS ) { return((1<<X_DIRECTION_BIT)); }
if ( axis_idx == Y_AXIS ) { return((1<<Y_DIRECTION_BIT)); }
return((1<<Z_DIRECTION_BIT));
}
// Returns limit pin mask according to Grbl internal axis indexing.
uint8_t get_limit_pin_mask(uint8_t axis_idx)
{
if ( axis_idx == X_AXIS ) { return((1<<X_LIMIT_BIT)); }
if ( axis_idx == Y_AXIS ) { return((1<<Y_LIMIT_BIT)); }
return((1<<Z_LIMIT_BIT));
}