209 lines
8.9 KiB
C
209 lines
8.9 KiB
C
/*
|
|
stepper_plan.c - buffers movement commands and manages the acceleration profile plan
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "stepper_plan.h"
|
|
#include "nuts_bolts.h"
|
|
#include "stepper.h"
|
|
#include "config.h"
|
|
|
|
struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
|
volatile int block_buffer_head; // Index of the next block to be pushed
|
|
volatile int block_buffer_tail; // Index of the block to process now
|
|
uint8_t acceleration_management; // Acceleration management active?
|
|
|
|
inline uint32_t estimate_acceleration_distance(int32_t current_rate, int32_t target_rate, int32_t acceleration) {
|
|
return((target_rate*target_rate-current_rate*current_rate)/(2*acceleration));
|
|
}
|
|
|
|
inline uint32_t estimate_acceleration_ticks(int32_t start_rate, int32_t acceleration_per_tick, int32_t step_events) {
|
|
return(
|
|
round(
|
|
(sqrt(2*acceleration_per_tick*step_events+(start_rate*start_rate))-start_rate)/
|
|
acceleration_per_tick));
|
|
}
|
|
|
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
|
// In practice both factors must be in the range 0 ... 1.0
|
|
void calculate_trapezoid_for_block(struct Block *block, double entry_factor, double exit_factor) {
|
|
block->initial_rate = round(block->nominal_rate*entry_factor);
|
|
int32_t final_rate = round(block->nominal_rate*entry_factor);
|
|
int32_t acceleration_per_second = block->rate_delta*ACCELERATION_TICKS_PER_SECOND;
|
|
int32_t acceleration_steps =
|
|
estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second);
|
|
int32_t decelleration_steps =
|
|
estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_second);
|
|
// Check if the acceleration and decelleration periods overlap. In that case nominal_speed will
|
|
// never be reached but that's okay. Just truncate both periods proportionally so that they
|
|
// fit within the allotted step events.
|
|
int32_t plateau_steps = block->step_event_count-acceleration_steps-decelleration_steps;
|
|
if (plateau_steps < 0) {
|
|
int32_t half_overlap_region = fabs(plateau_steps)/2;
|
|
plateau_steps = 0;
|
|
acceleration_steps = max(acceleration_steps-half_overlap_region,0);
|
|
decelleration_steps = max(decelleration_steps-half_overlap_region,0);
|
|
}
|
|
block->accelerate_ticks = estimate_acceleration_ticks(block->initial_rate, block->rate_delta, acceleration_steps);
|
|
if (plateau_steps) {
|
|
block->plateau_ticks = round(1.0*plateau_steps/(block->nominal_rate*ACCELERATION_TICKS_PER_SECOND));
|
|
} else {
|
|
block->plateau_ticks = 0;
|
|
}
|
|
}
|
|
|
|
inline double estimate_max_speed(double max_acceleration, double target_velocity, double distance) {
|
|
return(sqrt(-2*max_acceleration*distance+target_velocity*target_velocity));
|
|
}
|
|
|
|
inline double estimate_jerk(struct Block *before, struct Block *after) {
|
|
return(max(fabs(before->speed_x-after->speed_x),
|
|
max(fabs(before->speed_y-after->speed_y),
|
|
fabs(before->speed_z-after->speed_z))));
|
|
}
|
|
|
|
// Builds plan for a single block provided. Returns TRUE if changes were made to this block
|
|
// that requires any earlier blocks to be recalculated too.
|
|
int8_t build_plan_for_single_block(struct Block *previous, struct Block *current, struct Block *next) {
|
|
if(!current){return(TRUE);}
|
|
double exit_factor;
|
|
double entry_factor = 1.0;
|
|
if (next) {
|
|
exit_factor = next->entry_factor;
|
|
} else {
|
|
exit_factor = 0.0;
|
|
}
|
|
|
|
if (previous) {
|
|
double jerk = estimate_jerk(previous, current);
|
|
if (jerk > settings.max_jerk) {
|
|
entry_factor = (settings.max_jerk/jerk);
|
|
}
|
|
if (exit_factor<entry_factor) {
|
|
double max_entry_speed = estimate_max_speed(-settings.acceleration,current->nominal_speed*exit_factor,
|
|
current->millimeters);
|
|
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
|
if (max_entry_factor < entry_factor) {
|
|
entry_factor = max_entry_factor;
|
|
}
|
|
}
|
|
} else {
|
|
entry_factor = 0.0;
|
|
}
|
|
// Check if we made a difference for this block. If we didn't, the planner can call it quits
|
|
// here. No need to process any earlier blocks.
|
|
int8_t keep_going = (entry_factor > current->entry_factor ? TRUE : FALSE);
|
|
// Store result and recalculate trapezoid parameters
|
|
current->entry_factor = entry_factor;
|
|
calculate_trapezoid_for_block(current, entry_factor, exit_factor);
|
|
return(keep_going);
|
|
}
|
|
|
|
void recalculate_plan() {
|
|
int8_t block_index = block_buffer_head;
|
|
struct Block *block[3] = {NULL, NULL, NULL};
|
|
while(block_index != block_buffer_tail) {
|
|
block[2]= block[1];
|
|
block[1]= block[0];
|
|
block[0] = &block_buffer[block_index];
|
|
if (!build_plan_for_single_block(block[0], block[1], block[2])) {return;}
|
|
block_index = (block_index-1) % BLOCK_BUFFER_SIZE;
|
|
}
|
|
if (block[1]) {
|
|
calculate_trapezoid_for_block(block[0], block[0]->entry_factor, block[1]->entry_factor);
|
|
}
|
|
}
|
|
|
|
void plan_enable_acceleration_management() {
|
|
if (!acceleration_management) {
|
|
st_synchronize();
|
|
acceleration_management = TRUE;
|
|
}
|
|
}
|
|
|
|
void plan_disable_acceleration_management() {
|
|
if(acceleration_management) {
|
|
st_synchronize();
|
|
acceleration_management = FALSE;
|
|
}
|
|
}
|
|
|
|
void plan_init() {
|
|
block_buffer_head = 0;
|
|
block_buffer_tail = 0;
|
|
plan_enable_acceleration_management();
|
|
}
|
|
|
|
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
|
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
|
void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
|
|
// Calculate the buffer head after we push this byte
|
|
int next_buffer_head = (block_buffer_head + 1) % BLOCK_BUFFER_SIZE;
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
// Rest here until there is room in the buffer.
|
|
while(block_buffer_tail == next_buffer_head) { sleep_mode(); }
|
|
// Prepare to set up new block
|
|
struct Block *block = &block_buffer[block_buffer_head];
|
|
// Number of steps for each axis
|
|
block->steps_x = labs(steps_x);
|
|
block->steps_y = labs(steps_y);
|
|
block->steps_z = labs(steps_z);
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
|
|
// Bail if this is a zero-length block
|
|
if (block->step_event_count == 0) { return; };
|
|
// Calculate speed in mm/minute for each axis
|
|
double multiplier = 60.0*1000000.0/microseconds;
|
|
block->speed_x = block->steps_x*multiplier/settings.steps_per_mm[0];
|
|
block->speed_y = block->steps_y*multiplier/settings.steps_per_mm[1];
|
|
block->speed_z = block->steps_z*multiplier/settings.steps_per_mm[2];
|
|
block->nominal_speed = millimeters*multiplier;
|
|
block->nominal_rate = round(block->step_event_count*multiplier);
|
|
|
|
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
|
|
// average travel per step event changes. For a line along one axis the travel per step event
|
|
// is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
|
|
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
|
|
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
|
|
// specifically for each line to compensate for this phenomenon:
|
|
double travel_per_step = (1.0*millimeters)/block->step_event_count;
|
|
block->rate_delta = round(
|
|
(settings.acceleration/(60.0*ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/min per acceleration_tick
|
|
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
|
|
if (acceleration_management) {
|
|
calculate_trapezoid_for_block(block,0,0); // compute a conservative acceleration trapezoid for now
|
|
} else {
|
|
block->accelerate_ticks = 0;
|
|
block->plateau_ticks = 0;
|
|
block->rate_delta = 0;
|
|
}
|
|
|
|
// Compute direction bits for this block
|
|
block->direction_bits = 0;
|
|
if (steps_x < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
|
if (steps_y < 0) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
|
if (steps_z < 0) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
|
// Move buffer head
|
|
block_buffer_head = next_buffer_head;
|
|
}
|
|
|