371 lines
16 KiB
C
371 lines
16 KiB
C
/*
|
|
motion_control.c - cartesian robot controller.
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
|
|
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
|
|
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
|
|
|
|
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
|
|
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
|
|
*/
|
|
|
|
#include <avr/io.h>
|
|
#include "config.h"
|
|
#include "motion_control.h"
|
|
#include <util/delay.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "nuts_bolts.h"
|
|
#include "stepper.h"
|
|
#include "geometry.h"
|
|
|
|
#include "wiring_serial.h"
|
|
|
|
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
|
|
|
volatile int8_t mode; // The current operation mode
|
|
int32_t position[3]; // The current position of the tool in absolute steps
|
|
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
|
|
|
void set_stepper_directions(int8_t *direction);
|
|
inline void step_steppers(uint8_t bits);
|
|
inline void step_axis(uint8_t axis);
|
|
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
|
|
|
void mc_init()
|
|
{
|
|
mode = MC_MODE_AT_REST;
|
|
clear_vector(position);
|
|
}
|
|
|
|
void mc_dwell(uint32_t milliseconds)
|
|
{
|
|
mode = MC_MODE_DWELL;
|
|
st_synchronize();
|
|
_delay_ms(milliseconds);
|
|
mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
// Calculate the microseconds between steps that we should wait in order to travel the
|
|
// designated amount of millimeters in the amount of steps we are going to generate
|
|
void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) {
|
|
int32_t pace;
|
|
if (invert) {
|
|
pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps);
|
|
} else {
|
|
pace = round((ONE_MINUTE_OF_MICROSECONDS/X_STEPS_PER_MM)/feed_rate);
|
|
}
|
|
st_buffer_pace(pace);
|
|
}
|
|
|
|
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
|
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
|
// 1/feed_rate minutes.
|
|
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
|
{
|
|
// Flags to keep track of which axes to step
|
|
uint8_t step_bits;
|
|
uint8_t axis; // loop variable
|
|
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
|
int32_t target[3], // The target position in absolute steps
|
|
step_count[3], // Absolute steps of travel along each axis
|
|
counter[3], // A counter used in the bresenham algorithm for line plotting
|
|
maximum_steps; // The larges absolute step-count of any axis
|
|
|
|
// Setup ---------------------------------------------------------------------------------------------------
|
|
|
|
target[X_AXIS] = round(x*X_STEPS_PER_MM);
|
|
target[Y_AXIS] = round(y*Y_STEPS_PER_MM);
|
|
target[Z_AXIS] = round(z*Z_STEPS_PER_MM);
|
|
// Determine direction and travel magnitude for each axis
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
step_count[axis] = labs(target[axis] - position[axis]);
|
|
direction[axis] = signof(target[axis] - position[axis]);
|
|
}
|
|
// Find the magnitude of the axis with the longest travel
|
|
maximum_steps = max(step_count[Z_AXIS],
|
|
max(step_count[X_AXIS], step_count[Y_AXIS]));
|
|
// Nothing to do?
|
|
if (maximum_steps == 0) { return; }
|
|
// Set up a neat counter for each axis
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
counter[axis] = -maximum_steps/2;
|
|
}
|
|
// Set our direction pins
|
|
set_stepper_directions(direction);
|
|
|
|
// Ask old Phytagoras to estimate how many mm our next move is going to take us
|
|
double millimeters_of_travel =
|
|
sqrt(square(X_STEPS_PER_MM*step_count[X_AXIS]) +
|
|
square(Y_STEPS_PER_MM*step_count[Y_AXIS]) +
|
|
square(Z_STEPS_PER_MM*step_count[Z_AXIS]));
|
|
// And set the step pace
|
|
compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate);
|
|
|
|
// Execution -----------------------------------------------------------------------------------------------
|
|
|
|
mode = MC_MODE_LINEAR;
|
|
|
|
do {
|
|
// Trace the line
|
|
step_bits = 0;
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
if (target[axis] != position[axis])
|
|
{
|
|
counter[axis] += step_count[axis];
|
|
if (counter[axis] > 0)
|
|
{
|
|
step_bits |= st_bit_for_stepper(axis);
|
|
counter[axis] -= maximum_steps;
|
|
position[axis] += direction[axis];
|
|
}
|
|
}
|
|
}
|
|
if(step_bits) {
|
|
step_steppers(step_bits);
|
|
}
|
|
} while (step_bits);
|
|
mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
|
|
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
|
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
|
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
|
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
|
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
|
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
|
int axis_linear, double feed_rate, int invert_feed_rate)
|
|
{
|
|
uint32_t start_x, start_y; // The start position in the coordinate system local to the circle
|
|
uint32_t diagonal_error; // A variable to keep track of varations in the error-value during
|
|
// the tracing of the arc
|
|
|
|
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
|
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
|
|
int32_t x, y, target_x, target_y; // current position and target position in the
|
|
// local coordinate system of the arc-generator where [0,0] is the
|
|
// center of the arc.
|
|
int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed
|
|
int32_t error; // error is always == (x**2 + y**2 - radius**2),
|
|
|
|
int dx, dy; // Trace directions
|
|
|
|
// Setup arc interpolation --------------------------------------------------------------------------------
|
|
|
|
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
|
|
if(radius_steps == 0) { return; }
|
|
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
|
angular_direction = signof(angular_travel);
|
|
// Calculate the initial position and target position in the local coordinate system of the arc
|
|
start_x = x = round(sin(theta)*radius_steps);
|
|
start_y = y = round(cos(theta)*radius_steps);
|
|
target_x = trunc(sin(theta+angular_travel)*radius_steps);
|
|
target_y = trunc(cos(theta+angular_travel)*radius_steps);
|
|
// Precalculate these values to optimize target detection
|
|
target_direction_x = signof(target_x)*angular_direction;
|
|
target_direction_y = signof(target_y)*angular_direction;
|
|
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
|
|
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
|
|
// are exactly on top of the arc.
|
|
error = x*x + y*y - radius_steps*radius_steps;
|
|
|
|
// Estimate length of arc in steps -------------------------------------------------------------------------
|
|
|
|
/*
|
|
To support helical motion we need to know in advance how many steppings the arc will need.
|
|
The calculations are based on the fact that we trace the circle by offsetting a square. The circle has
|
|
four "sides" or quadrants. For each quadrant we step mainly in one axis. The amount steps for one quarter of the
|
|
circle (e.g. along the x axis with positive y) is equal to one side of a square inscribed in the circle we
|
|
are tracing.
|
|
|
|
Quadrants of the circle
|
|
|
|
+---- 0 ----+ 0 - y is always positive and |x| < |y|
|
|
| | 1 - x is always positive and |x| > |y|
|
|
| | 2 - y is always negative and |x| < |y|
|
|
3 + 1 3 - x is always negative and |x| > |y|
|
|
| |
|
|
| | length of one side: 2*radius/sqrt(2)
|
|
+---- 2 ----+
|
|
*/
|
|
|
|
// Find the quadrants of the starting point and the target
|
|
int start_quadrant = quadrant_of_the_circle(start_x, start_y);
|
|
int target_quadrant = quadrant_of_the_circle(target_x, target_y);
|
|
uint32_t arc_steps=0;
|
|
// Will this whole arc take place within the same quadrant?
|
|
if (start_quadrant == target_quadrant && (fabs(angular_travel) <= (M_PI/2))) {
|
|
if(quadrant_horizontal(start_quadrant)) { // a horizontal quadrant where x will be the primary direction
|
|
arc_steps = labs(target_x-start_x);
|
|
} else { // a vertical quadrant where y will be the primary direction
|
|
arc_steps = labs(target_y-start_y);
|
|
}
|
|
} else { // the start and target points are in different quadrants
|
|
// Lets estimate the amount of steps along half a quadrant
|
|
uint32_t steps_in_half_quadrant = ceil(radius_steps/sqrt(2));
|
|
// Add the steps in the first partial quadrant
|
|
arc_steps += steps_in_partial_quadrant(start_x, start_y,
|
|
start_quadrant, angular_direction, steps_in_half_quadrant);
|
|
// Count the number of full quadrants between the start and end quadrants
|
|
uint8_t full_quadrants_traveled = full_quadrants_between(start_quadrant, target_quadrant, angular_direction);
|
|
// Add steps for the full quadrants plus some stray steps for "corners"
|
|
arc_steps += full_quadrants_traveled*(steps_in_half_quadrant*2+1);
|
|
// Add the steps in the final partial quadrant. By inverting the angular direction we get the correct number for
|
|
// the target quadrant which steps through the opposite part of the quadrant with respect to the start quadrant.
|
|
arc_steps += steps_in_partial_quadrant(target_x, target_y,
|
|
target_quadrant, -angular_direction, steps_in_half_quadrant);
|
|
}
|
|
|
|
// Set up the linear interpolation of the "depth" axis -----------------------------------------------------
|
|
|
|
int32_t linear_steps = labs(st_millimeters_to_steps(linear_travel, axis_linear));
|
|
int linear_direction = signof(linear_travel);
|
|
// The number of steppings needed to trace this motion is equal to the motion that require the maximum
|
|
// amount of steps: the arc or the line:
|
|
int32_t maximum_steps = max(linear_steps, arc_steps);
|
|
// Initialize the counters to do 2D linear bresenham as if the motion along the arc itself was a single axis
|
|
// of the line, while the linear "depth" axis was the other.
|
|
int32_t linear_counter = -maximum_steps/2;
|
|
int32_t arc_counter = -maximum_steps/2;
|
|
|
|
// Calculate feed rate -------------------------------------------------------------------------------------
|
|
|
|
// We then calculate the millimeters of helical travel
|
|
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
|
// Then we calculate the microseconds between each step as if we will trace the full circle.
|
|
// It doesn't matter what fraction of the circle we are actually going to trace. The pace is the same.
|
|
compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate);
|
|
|
|
// Execution -----------------------------------------------------------------------------------------------
|
|
|
|
mode = MC_MODE_ARC;
|
|
// Set the direction of the linear or "depth" axis, cause it will never change
|
|
direction[axis_linear] = linear_direction;
|
|
// Cache some stepper bit-masks to speed up the interpolation code
|
|
uint8_t axis_1_bit = st_bit_for_stepper(axis_1);
|
|
uint8_t axis_2_bit = st_bit_for_stepper(axis_2);
|
|
uint8_t axis_linear_bit = st_bit_for_stepper(axis_linear);
|
|
uint8_t diagonal_bits = (axis_1_bit | axis_2_bit);
|
|
|
|
uint8_t step_bits;
|
|
|
|
while(mode)
|
|
{
|
|
// This loop sets the bits in the step_bits variable for each stepper it wants to step in this cycle.
|
|
step_bits = 0;
|
|
// The bresenham algorithm chooses when to travel in the depth axis and when to travel along the arc
|
|
linear_counter += linear_steps;
|
|
if (linear_counter > 0) {
|
|
linear_counter -= maximum_steps;
|
|
// Move one step in the depth direction:
|
|
step_bits |= axis_linear_bit;
|
|
}
|
|
arc_counter += arc_steps;
|
|
if (arc_counter > 0) {
|
|
arc_counter -= maximum_steps;
|
|
// Do one step of the arc:
|
|
// Determine directions for each axis at this point in the arc
|
|
dx = (y!=0) ? signof(y) * angular_direction : -signof(x);
|
|
dy = (x!=0) ? -signof(x) * angular_direction : -signof(y);
|
|
// Take dx and dy which are local to the arc being generated and map them on to the
|
|
// selected tool-space-axes for the current arc.
|
|
direction[axis_1] = dx;
|
|
direction[axis_2] = dy;
|
|
// Check which axis will be "major" for this stepping
|
|
if (labs(x)<labs(y)) {
|
|
// X is major: Step arc horizontally
|
|
error += 1 + 2*x * dx;
|
|
x+=dx;
|
|
diagonal_error = error + 1 + 2*y*dy;
|
|
if(labs(error) >= labs(diagonal_error)) {
|
|
y += dy;
|
|
error = diagonal_error;
|
|
step_bits |= diagonal_bits; // step diagonal
|
|
} else {
|
|
step_bits |= axis_1_bit; // step straight
|
|
}
|
|
} else {
|
|
// Y is major: Step arc vertically
|
|
error += 1 + 2*y * dy;
|
|
y+=dy;
|
|
diagonal_error = error + 1 + 2*x * dx;
|
|
if(labs(error) >= labs(diagonal_error)) {
|
|
x += dx;
|
|
error = diagonal_error;
|
|
step_bits |= diagonal_bits; // step diagonal
|
|
} else {
|
|
step_bits |= axis_2_bit; // step straight
|
|
}
|
|
}
|
|
}
|
|
// Tell the steppers to do the stepping
|
|
set_stepper_directions(direction);
|
|
step_steppers(step_bits);
|
|
|
|
// Check if target has been reached. Todo: Simplify/optimize/clarify
|
|
if ((x * target_direction_y >=
|
|
target_x * target_direction_y) &&
|
|
(y * target_direction_x <=
|
|
target_y * target_direction_x))
|
|
{ if ((signof(x) == signof(target_x)) && (signof(y) == signof(target_y)))
|
|
{ mode = MC_MODE_AT_REST; } }
|
|
}
|
|
// Update the tool position to the new actual position
|
|
position[axis_1] += x-start_x;
|
|
position[axis_2] += y-start_y;
|
|
position[axis_2] += linear_steps*linear_direction;
|
|
}
|
|
|
|
void mc_go_home()
|
|
{
|
|
mode = MC_MODE_HOME;
|
|
st_go_home();
|
|
st_synchronize();
|
|
clear_vector(position); // By definition this is location [0, 0, 0]
|
|
mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
int mc_status()
|
|
{
|
|
return(mode);
|
|
}
|
|
|
|
// Set the direction bits for the stepper motors according to the provided vector.
|
|
// direction is an array of three 8 bit integers representing the direction of
|
|
// each motor. The values should be negative (reverse), 0 or positive (forward).
|
|
void set_stepper_directions(int8_t *direction)
|
|
{
|
|
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
|
|
int is set when the direction == -1, but is 0 when direction is forward. This
|
|
way we can generate the whole direction bit-mask without doing any comparisions
|
|
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
|
|
*/
|
|
direction_bits = (
|
|
((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) |
|
|
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
|
|
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
|
|
}
|
|
|
|
inline void step_steppers(uint8_t bits)
|
|
{
|
|
st_buffer_step(direction_bits | bits);
|
|
}
|