grbl-LPC-CoreXY/nuts_bolts.h
Sonny J 4d03c4febc Further planner improvements and misc minor bug fixes. Memory savings and increased buffer size.
- Update grbl version and settings version to automatically reset
eeprom. FYI, this will reset your grbl settings. - Saved
3*BLOCK_BUFFER_SIZE doubles in static memory by removing obsolete
variables: speed_x, speed_y, and speed_z. - Increased buffer size
conservatively to 18 from 16. (Probably can do 20). - Removed expensive!
modulo operator from block indexing function. Reduces significant
computational overhead. - Re-organized some sqrt() calls to be more
efficient during time critical planning cases, rather than non-time
critical. - Minor bug fix in planner max junction velocity logic. -
Simplified arc logic and removed need to multiply for CW or CCW
direction.
2011-09-13 21:57:16 -06:00

46 lines
1.4 KiB
C

/*
motion_control.h - cartesian robot controller.
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef nuts_bolts_h
#define nuts_bolts_h
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#define false 0
#define true 1
#define X_AXIS 0
#define Y_AXIS 1
#define Z_AXIS 2
#define clear_vector(a) memset(a, 0, sizeof(a))
#define clear_vector_double(a) memset(a, 0.0, sizeof(a))
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
// Read a floating point value from a string. Line points to the input buffer, char_counter
// is the indexer pointing to the current character of the line, while double_ptr is
// a pointer to the result variable. Returns true when it succeeds
int read_double(char *line, uint8_t *char_counter, double *double_ptr);
#endif