grbl-LPC-CoreXY/grbl/system.c
Sonny Jeon 4bdc20ffb9 Overhauled state machine. New safety door feature.
- Overhauled the state machine and cleaned up its overall operation.
This involved creating a new ‘suspend’ state for what all external
commands, except real-time commands, are ignored. All hold type states
enter this suspend state.

- Removed ‘auto cycle start’ setting from Grbl. This was not used by
users in its intended way and is somewhat redundant, as GUI manage the
cycle start by streaming. It also muddled up how Grbl should interpret
how and when to execute a g-code block. Removing it made everything
much much simpler.

- Fixed a program pause bug when used with other buffer_sync commands.

- New safety door feature for OEMs. Immediately forces a feed hold and
then de-energizes the machine. Resuming is blocked until the door is
closed. When it is, it re-energizes the system and then resumes on the
normal toolpath.

- Safety door input pin is optional and uses the feed hold pin on A1.
Enabled by config.h define.

- Spindle and coolant re-energizing upon a safety door resume has a
programmable delay time to allow for complete spin up to rpm and
turning on the coolant before resuming motion.

- Safety door-style feed holds can be used instead of regular feed hold
(doesn’t de-energize the machine) with a ‘@‘ character. If the safety
door input pin is not enabled, the system can be resumed at any time.
2015-02-11 21:19:00 -07:00

270 lines
12 KiB
C

/*
system.c - Handles system level commands and real-time processes
Part of Grbl v0.9
Copyright (c) 2014-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
void system_init()
{
CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins
#ifdef DISABLE_CONTROL_PIN_PULL_UP
CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down.
#else
CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation.
#endif
CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt
}
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
// only the realtime command execute variable to have the main program execute these when
// its ready. This works exactly like the character-based realtime commands when picked off
// directly from the incoming serial data stream.
ISR(CONTROL_INT_vect)
{
uint8_t pin = (CONTROL_PIN & CONTROL_MASK);
#ifndef INVERT_CONTROL_PIN
pin ^= CONTROL_MASK;
#endif
// Enter only if any CONTROL pin is detected as active.
if (pin) {
if (bit_istrue(pin,bit(RESET_BIT))) {
mc_reset();
} else if (bit_istrue(pin,bit(CYCLE_START_BIT))) {
bit_true(sys.rt_exec_state, EXEC_CYCLE_START);
#ifndef ENABLE_SAFETY_DOOR_INPUT_PIN
} else if (bit_istrue(pin,bit(FEED_HOLD_BIT))) {
bit_true(sys.rt_exec_state, EXEC_FEED_HOLD);
#else
} else if (bit_istrue(pin,bit(SAFETY_DOOR_BIT))) {
bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR);
#endif
}
}
}
// Returns if safety door is ajar(T) or closed(F), based on pin state.
uint8_t system_check_safety_door_ajar()
{
#ifdef ENABLE_SAFETY_DOOR_INPUT_PIN
#ifdef INVERT_CONTROL_PIN
return(bit_istrue(CONTROL_PIN,bit(SAFETY_DOOR_BIT)));
#else
return(bit_isfalse(CONTROL_PIN,bit(SAFETY_DOOR_BIT)));
#endif
#else
return(false); // Input pin not enabled, so just return that it's closed.
#endif
}
// Executes user startup script, if stored.
void system_execute_startup(char *line)
{
uint8_t n;
for (n=0; n < N_STARTUP_LINE; n++) {
if (!(settings_read_startup_line(n, line))) {
report_status_message(STATUS_SETTING_READ_FAIL);
} else {
if (line[0] != 0) {
printString(line); // Echo startup line to indicate execution.
report_status_message(gc_execute_line(line));
}
}
}
}
// Directs and executes one line of formatted input from protocol_process. While mostly
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
// settings, initiating the homing cycle, and toggling switch states. This differs from
// the realtime command module by being susceptible to when Grbl is ready to execute the
// next line during a cycle, so for switches like block delete, the switch only effects
// the lines that are processed afterward, not necessarily real-time during a cycle,
// since there are motions already stored in the buffer. However, this 'lag' should not
// be an issue, since these commands are not typically used during a cycle.
uint8_t system_execute_line(char *line)
{
uint8_t char_counter = 1;
uint8_t helper_var = 0; // Helper variable
float parameter, value;
switch( line[char_counter] ) {
case 0 : report_grbl_help(); break;
case '$' : // Prints Grbl settings
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print.
else { report_grbl_settings(); }
break;
case 'G' : // Prints gcode parser state
// TODO: Move this to realtime commands for GUIs to request this data during suspend-state.
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
else { report_gcode_modes(); }
break;
case 'C' : // Set check g-code mode [IDLE/CHECK]
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
// Perform reset when toggling off. Check g-code mode should only work if Grbl
// is idle and ready, regardless of alarm locks. This is mainly to keep things
// simple and consistent.
if ( sys.state == STATE_CHECK_MODE ) {
mc_reset();
report_feedback_message(MESSAGE_DISABLED);
} else {
if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
sys.state = STATE_CHECK_MODE;
report_feedback_message(MESSAGE_ENABLED);
}
break;
case 'X' : // Disable alarm lock [ALARM]
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
if (sys.state == STATE_ALARM) {
report_feedback_message(MESSAGE_ALARM_UNLOCK);
sys.state = STATE_IDLE;
// Don't run startup script. Prevents stored moves in startup from causing accidents.
if (system_check_safety_door_ajar()) { // Check safety door switch before returning.
bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR);
protocol_execute_realtime(); // Enter safety door mode.
}
} // Otherwise, no effect.
break;
// case 'J' : break; // Jogging methods
// TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be
// susceptible to other realtime commands except for e-stop. The jogging function is intended to
// be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped
// steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would
// start motion and toggle off would initiate a deceleration to stop. One could 'feather' the
// motion by repeatedly toggling to slow the motion to the desired location. Location data would
// need to be updated real-time and supplied to the user through status queries.
// More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are
// handled by the planner. It would be possible for the jog subprogram to insert blocks into the
// block buffer without having the planner plan them. It would need to manage de/ac-celerations
// on its own carefully. This approach could be effective and possibly size/memory efficient.
default :
// Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
switch( line[char_counter] ) {
case '#' : // Print Grbl NGC parameters
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
else { report_ngc_parameters(); }
break;
case 'H' : // Perform homing cycle [IDLE/ALARM]
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
sys.state = STATE_HOMING; // Set system state variable
// Only perform homing if Grbl is idle or lost.
// TODO: Likely not required.
if (system_check_safety_door_ajar()) { // Check safety door switch before homing.
bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR);
protocol_execute_realtime(); // Enter safety door mode.
}
mc_homing_cycle();
if (!sys.abort) { // Execute startup scripts after successful homing.
sys.state = STATE_IDLE; // Set to IDLE when complete.
st_go_idle(); // Set steppers to the settings idle state before returning.
system_execute_startup(line);
}
} else { return(STATUS_SETTING_DISABLED); }
break;
case 'I' : // Print or store build info. [IDLE/ALARM]
if ( line[++char_counter] == 0 ) {
settings_read_build_info(line);
report_build_info(line);
} else { // Store startup line [IDLE/ALARM]
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
helper_var = char_counter; // Set helper variable as counter to start of user info line.
do {
line[char_counter-helper_var] = line[char_counter];
} while (line[char_counter++] != 0);
settings_store_build_info(line);
}
break;
case 'N' : // Startup lines. [IDLE/ALARM]
if ( line[++char_counter] == 0 ) { // Print startup lines
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
if (!(settings_read_startup_line(helper_var, line))) {
report_status_message(STATUS_SETTING_READ_FAIL);
} else {
report_startup_line(helper_var,line);
}
}
break;
} else { // Store startup line [IDLE Only] Prevents motion during ALARM.
if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
helper_var = true; // Set helper_var to flag storing method.
// No break. Continues into default: to read remaining command characters.
}
default : // Storing setting methods [IDLE/ALARM]
if(!read_float(line, &char_counter, &parameter)) { return(STATUS_BAD_NUMBER_FORMAT); }
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
if (helper_var) { // Store startup line
// Prepare sending gcode block to gcode parser by shifting all characters
helper_var = char_counter; // Set helper variable as counter to start of gcode block
do {
line[char_counter-helper_var] = line[char_counter];
} while (line[char_counter++] != 0);
// Execute gcode block to ensure block is valid.
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
if (helper_var) { return(helper_var); }
else {
helper_var = trunc(parameter); // Set helper_var to int value of parameter
settings_store_startup_line(helper_var,line);
}
} else { // Store global setting.
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); }
return(settings_store_global_setting((uint8_t)parameter, value));
}
}
}
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
}
// Returns machine position of axis 'idx'. Must be sent a 'step' array.
// NOTE: If motor steps and machine position are not in the same coordinate frame, this function
// serves as a central place to compute the transformation.
float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx)
{
float pos;
#ifdef COREXY
if (idx==A_MOTOR) {
pos = 0.5*((steps[A_MOTOR] + steps[B_MOTOR])/settings.steps_per_mm[idx]);
} else { // (idx==B_MOTOR)
pos = 0.5*((steps[A_MOTOR] - steps[B_MOTOR])/settings.steps_per_mm[idx]);
}
#else
pos = steps[idx]/settings.steps_per_mm[idx];
#endif
return(pos);
}
void system_convert_array_steps_to_mpos(float *position, int32_t *steps)
{
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
position[idx] = system_convert_axis_steps_to_mpos(steps, idx);
}
return;
}