grbl-LPC-CoreXY/limits.c
Sonny Jeon 8f8d8e2887 Added grbl planner Matlab simulator for test reference. Updated line number compile-time option.
- Added a grbl planner simulation tool that was written in Matlab and
Python. It was used to visualize the inner workings of the planner as a
program is streamed to it. The simulation assumes that the planner
buffer is empty, then filled, and kept filled. This is mainly for users
to see how the planner works.

- Updated some of the compile-time ifdefs when enabling line numbers.
The leaving the un-used line numbers in the function calls eats a
non-neglible amount of flash memory. So the new if-defs remove them.
2014-02-26 12:10:07 -07:00

277 lines
12 KiB
C

/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
Copyright (c) 2012-2014 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "system.h"
#include "settings.h"
#include "protocol.h"
#include "planner.h"
#include "stepper.h"
#include "motion_control.h"
#include "limits.h"
#include "report.h"
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Axis search distance multiplier. Must be > 1.
void limits_init()
{
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
if (bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) {
LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down.
} else {
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
}
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
} else {
limits_disable();
}
#ifdef ENABLE_SOFTWARE_DEBOUNCE
MCUSR &= ~(1<<WDRF);
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = (1<<WDP0); // Set time-out at ~32msec.
#endif
}
void limits_disable()
{
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt
PCICR &= ~(1 << LIMIT_INT); // Disable Pin Change Interrupt
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
// bouncing pin without a debouncing method. A simple software debouncing feature may be enabled
// through the config.h file, where an extra timer delays the limit pin read by several milli-
// seconds to help with, not fix, bouncing switches.
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
// homing cycles and will not respond correctly. Upon user request or need, there may be a
// special pinout for an e-stop, but it is generally recommended to just directly connect
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
#ifndef ENABLE_SOFTWARE_DEBOUNCE
ISR(LIMIT_INT_vect) // DEFAULT: Limit pin change interrupt process.
{
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
#else // OPTIONAL: Software debounce limit pin routine.
// Upon limit pin change, enable watchdog timer to create a short delay.
ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } }
ISR(WDT_vect) // Watchdog timer ISR
{
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
uint8_t bits = LIMIT_PIN;
// Check limit pin state.
if (bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { bits ^= LIMIT_MASK; }
if (bits & LIMIT_MASK) {
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
}
#endif
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after
// completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate
// the trigger point of the limit switches. The rapid stops are handled by a system level axis lock
// mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically
// circumvent the processes for executing motions in normal operation.
// NOTE: Only the abort runtime command can interrupt this process.
void limits_go_home(uint8_t cycle_mask)
{
if (sys.abort) { return; } // Block if system reset has been issued.
// Initialize homing in search mode to quickly engage the specified cycle_mask limit switches.
bool approach = true;
float homing_rate = settings.homing_seek_rate;
uint8_t invert_pin, idx;
uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1);
float target[N_AXIS];
// Determine travel distance to the furthest homing switch based on user max travel settings.
// NOTE: settings.max_travel[] is stored as a negative value.
float max_travel = settings.max_travel[X_AXIS];
if (max_travel > settings.max_travel[Y_AXIS]) { max_travel = settings.max_travel[Y_AXIS]; }
if (max_travel > settings.max_travel[Z_AXIS]) { max_travel = settings.max_travel[Z_AXIS]; }
max_travel *= -HOMING_AXIS_SEARCH_SCALAR; // Ensure homing switches engaged by over-estimating max travel.
plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions.
do {
// Initialize invert_pin boolean based on approach and invert pin user setting.
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { invert_pin = approach; }
else { invert_pin = !approach; }
// Set target location and rate for active axes.
uint8_t n_active_axis = 0;
for (idx=0; idx<N_AXIS; idx++) {
if (bit_istrue(cycle_mask,bit(idx))) {
n_active_axis++;
if (!approach) { target[idx] = -max_travel; }
else { target[idx] = max_travel; }
} else {
target[idx] = 0.0;
}
}
if (bit_istrue(settings.homing_dir_mask,(1<<X_DIRECTION_BIT))) { target[X_AXIS] = -target[X_AXIS]; }
if (bit_istrue(settings.homing_dir_mask,(1<<Y_DIRECTION_BIT))) { target[Y_AXIS] = -target[Y_AXIS]; }
if (bit_istrue(settings.homing_dir_mask,(1<<Z_DIRECTION_BIT))) { target[Z_AXIS] = -target[Z_AXIS]; }
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
// Reset homing axis locks based on cycle mask.
uint8_t axislock = 0;
if (bit_istrue(cycle_mask,bit(X_AXIS))) { axislock |= (1<<X_STEP_BIT); }
if (bit_istrue(cycle_mask,bit(Y_AXIS))) { axislock |= (1<<Y_STEP_BIT); }
if (bit_istrue(cycle_mask,bit(Z_AXIS))) { axislock |= (1<<Z_STEP_BIT); }
sys.homing_axis_lock = axislock;
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
uint8_t limit_state;
#ifdef USE_LINE_NUMBERS
plan_buffer_line(target, homing_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion.
#else
plan_buffer_line(target, homing_rate, false); // Bypass mc_line(). Directly plan homing motion.
#endif
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
st_wake_up(); // Initiate motion
do {
// Check limit state. Lock out cycle axes when they change.
limit_state = LIMIT_PIN;
if (invert_pin) { limit_state ^= LIMIT_MASK; }
if (axislock & (1<<X_STEP_BIT)) {
if (limit_state & (1<<X_LIMIT_BIT)) { axislock &= ~(1<<X_STEP_BIT); }
}
if (axislock & (1<<Y_STEP_BIT)) {
if (limit_state & (1<<Y_LIMIT_BIT)) { axislock &= ~(1<<Y_STEP_BIT); }
}
if (axislock & (1<<Z_STEP_BIT)) {
if (limit_state & (1<<Z_LIMIT_BIT)) { axislock &= ~(1<<Z_STEP_BIT); }
}
sys.homing_axis_lock = axislock;
st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.
// Check only for user reset. No time to run protocol_execute_runtime() in this loop.
if (sys.execute & EXEC_RESET) { protocol_execute_runtime(); return; }
} while (STEP_MASK & axislock);
st_reset(); // Immediately force kill steppers and reset step segment buffer.
plan_reset(); // Reset planner buffer. Zero planner positions. Ensure homing motion is cleared.
delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate.
// Reverse direction and reset homing rate for locate cycle(s).
homing_rate = settings.homing_feed_rate;
approach = !approach;
} while (n_cycle-- > 0);
// The active cycle axes should now be homed and machine limits have been located. By
// default, grbl defines machine space as all negative, as do most CNCs. Since limit switches
// can be on either side of an axes, check and set axes machine zero appropriately. Also,
// set up pull-off maneuver from axes limit switches that have been homed. This provides
// some initial clearance off the switches and should also help prevent them from falsely
// triggering when hard limits are enabled or when more than one axes shares a limit pin.
for (idx=0; idx<N_AXIS; idx++) {
// Set up pull off targets and machine positions for limit switches homed in the negative
// direction, rather than the traditional positive. Leave non-homed positions as zero and
// do not move them.
// NOTE: settings.max_travel[] is stored as a negative value.
if (cycle_mask & bit(idx)) {
if ( settings.homing_dir_mask & get_direction_mask(idx) ) {
target[idx] = settings.homing_pulloff+settings.max_travel[idx];
sys.position[idx] = lround(settings.max_travel[idx]*settings.steps_per_mm[idx]);
} else {
target[idx] = -settings.homing_pulloff;
sys.position[idx] = 0;
}
} else { // Non-active cycle axis. Set target to not move during pull-off.
target[idx] = (float)sys.position[idx]/settings.steps_per_mm[idx];
}
}
plan_sync_position(); // Sync planner position to current machine position for pull-off move.
#ifdef USE_LINE_NUMBERS
plan_buffer_line(target, settings.homing_seek_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan motion.
#else
plan_buffer_line(target, settings.homing_seek_rate, false); // Bypass mc_line(). Directly plan motion.
#endif
// Initiate pull-off using main motion control routines.
// TODO : Clean up state routines so that this motion still shows homing state.
sys.state = STATE_QUEUED;
sys.execute |= EXEC_CYCLE_START;
protocol_execute_runtime();
protocol_buffer_synchronize(); // Complete pull-off motion.
// Set system state to homing before returning.
sys.state = STATE_HOMING;
}
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
// the workspace volume is in all negative space, and the system is in normal operation.
void limits_soft_check(float *target)
{
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { // NOTE: max_travel is stored as negative
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
// workspace volume so just come to a controlled stop so position is not lost. When complete
// enter alarm mode.
if (sys.state == STATE_CYCLE) {
sys.execute |= EXEC_FEED_HOLD;
do {
protocol_execute_runtime();
if (sys.abort) { return; }
} while ( sys.state != STATE_IDLE || sys.state != STATE_QUEUED);
}
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
sys.execute |= EXEC_CRIT_EVENT; // Indicate soft limit critical event
protocol_execute_runtime(); // Execute to enter critical event loop and system abort
return;
}
}
}