grbl-LPC-CoreXY/stepper.c

263 lines
8.1 KiB
C

/*
stepper.c - stepper motor interface
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. The circle buffer implementation gleaned from the wiring_serial library
by David A. Mellis */
#include "stepper.h"
#include "config.h"
#include <math.h>
#include <util/delay.h>
#include "nuts_bolts.h"
#include <avr/interrupt.h>
#include "wiring_serial.h"
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define STEP_BUFFER_SIZE 100
// A marker used to notify the stepper handler of a pace change
#define PACE_CHANGE_MARKER 0xff
volatile uint8_t step_buffer[STEP_BUFFER_SIZE]; // A buffer for step instructions
volatile int step_buffer_head = 0;
volatile int step_buffer_tail = 0;
volatile uint32_t current_pace;
volatile uint32_t next_pace = 0;
uint8_t stepper_mode = STEPPER_MODE_STOPPED;
void config_pace_timer(uint32_t microseconds);
// This timer interrupt is executed at the pace set with st_buffer_pace. It pops one instruction from
// the step_buffer, executes it. Then it starts timer2 in order to reset the motor port after
// five microseconds.
SIGNAL(SIG_OUTPUT_COMPARE1A)
{
if (step_buffer_head != step_buffer_tail) {
PORTD &= ~(1<<3);
uint8_t popped = step_buffer[step_buffer_tail];
if(popped == PACE_CHANGE_MARKER) {
// This is not a step-instruction, but a pace-change-marker: change pace
config_pace_timer(next_pace);
next_pace = 0;
} else {
popped ^= STEPPING_INVERT_MASK;
// Set the direction pins a cuple of nanoseconds before we step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (popped & DIRECTION_MASK);
// Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | popped;
// Reset step pulse reset timer
TCNT2 = -(((STEP_PULSE_MICROSECONDS-4)*TICKS_PER_MICROSECOND)/8);
}
// move the step buffer tail to the next instruction
step_buffer_tail = (step_buffer_tail + 1) % STEP_BUFFER_SIZE;
} else {
PORTD |= (1<<3);
}
}
// This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets
// the motor port after a short period (STEP_PULSE_MICROSECONDS) completing one step cycle.
SIGNAL(SIG_OVERFLOW2)
{
// reset stepping pins (leave the direction pins)
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (STEPPING_INVERT_MASK & STEP_MASK);
}
// Initialize and start the stepper motor subsystem
void st_init()
{
// Configure directions of interface pins
STEPPING_DDR |= STEPPING_MASK;
STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK); //| STEPPING_INVERT_MASK;
LIMIT_DDR &= ~(LIMIT_MASK);
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Configure Timer 2
TCCR2A = 0; // Normal operation
TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler
TIMSK2 = 0; // All interrupts disabled
sei();
// start off with a mellow pace
config_pace_timer(20000);
}
inline void st_buffer_step(uint8_t motor_port_bits)
{
// Buffer nothing unless stepping subsystem is running
if (stepper_mode != STEPPER_MODE_RUNNING) { return; }
// Calculate the buffer head after we push this byte
int next_buffer_head = (step_buffer_head + 1) % STEP_BUFFER_SIZE;
// If the buffer is full: good! That means we are well ahead of the robot.
// Nap until there is room for more steps.
while(step_buffer_tail == next_buffer_head) { sleep_mode(); }
// Push byte
step_buffer[step_buffer_head] = motor_port_bits;
step_buffer_head = next_buffer_head;
}
// Block until all buffered steps are executed
void st_synchronize()
{
if (stepper_mode == STEPPER_MODE_RUNNING) {
while(step_buffer_tail != step_buffer_head) { sleep_mode(); }
} else {
st_flush();
}
}
// Cancel all pending steps
void st_flush()
{
cli();
step_buffer_tail = step_buffer_head;
sei();
}
// Start the stepper subsystem
void st_start()
{
// Enable timer interrupts
TIMSK1 |= (1<<OCIE1A);
TIMSK2 |= (1<<TOIE2);
// set enable pin
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
stepper_mode = STEPPER_MODE_RUNNING;
}
// Execute all buffered steps, then stop the stepper subsystem
inline void st_stop()
{
// flush pending operations
st_synchronize();
// disable timer interrupts
TIMSK1 &= ~(1<<OCIE1A);
TIMSK2 &= ~(1<<TOIE2);
// reset enable pin
STEPPERS_ENABLE_PORT &= ~(1<<STEPPERS_ENABLE_BIT);
stepper_mode = STEPPER_MODE_STOPPED;
}
// Buffer a pace change. Pace is the rate with which steps are executed. It is measured in microseconds from step to step.
// It is continually adjusted to achieve constant actual feed rate. Unless pace-changes was buffered along with the steps
// they govern they might change at slightly wrong moments in time as the pace would change while the stepper buffer was
// still churning out the previous movement.
void st_buffer_pace(uint32_t microseconds)
{
// Do nothing if the pace in unchanged or the stepping subsytem is not running
if ((current_pace == microseconds) || (stepper_mode != STEPPER_MODE_RUNNING)) { return; }
// If the single-element pace "buffer" is full, sleep until it is popped
while (next_pace != 0) {
sleep_mode();
}
// Buffer the pace change
next_pace = microseconds;
st_buffer_step(PACE_CHANGE_MARKER); // Place a pace-change marker in the step-buffer
}
// Returns a bitmask with the stepper bit for the given axis set
uint8_t st_bit_for_stepper(int axis) {
switch(axis) {
case X_AXIS: return(1<<X_STEP_BIT);
case Y_AXIS: return(1<<Y_STEP_BIT);
case Z_AXIS: return(1<<Z_STEP_BIT);
}
return(0);
}
// Configures the prescaler and ceiling of timer 1 to produce the given pace as accurately as possible.
void config_pace_timer(uint32_t microseconds)
{
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;
uint16_t ceiling;
uint16_t prescaler;
if (ticks <= 0xffffL) {
ceiling = ticks;
prescaler = 0; // prescaler: 0
} else if (ticks <= 0x7ffffL) {
ceiling = ticks >> 3;
prescaler = 1; // prescaler: 8
} else if (ticks <= 0x3fffffL) {
ceiling = ticks >> 6;
prescaler = 2; // prescaler: 64
} else if (ticks <= 0xffffffL) {
ceiling = (ticks >> 8);
prescaler = 3; // prescaler: 256
} else if (ticks <= 0x3ffffffL) {
ceiling = (ticks >> 10);
prescaler = 4; // prescaler: 1024
} else {
// Okay, that was slower than we actually go. Just set the slowest speed
ceiling = 0xffff;
prescaler = 4;
}
// Set prescaler
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | ((prescaler+1)<<CS10);
// Set ceiling
OCR1A = ceiling;
current_pace = microseconds;
}
int check_limit_switches()
{
// Dual read as crude debounce
return((LIMIT_PORT & LIMIT_MASK) | (LIMIT_PORT & LIMIT_MASK));
}
int check_limit_switch(int axis)
{
uint8_t mask = 0;
switch (axis) {
case X_AXIS: mask = 1<<X_LIMIT_BIT; break;
case Y_AXIS: mask = 1<<Y_LIMIT_BIT; break;
case Z_AXIS: mask = 1<<Z_LIMIT_BIT; break;
}
return((LIMIT_PORT&mask) || (LIMIT_PORT&mask));
}
void st_go_home()
{
// Todo: Perform the homing cycle
}
// Convert from millimeters to step-counts along the designated axis
int32_t st_millimeters_to_steps(double millimeters, int axis) {
switch(axis) {
case X_AXIS: return(round(millimeters*X_STEPS_PER_MM));
case Y_AXIS: return(round(millimeters*Y_STEPS_PER_MM));
case Z_AXIS: return(round(millimeters*Z_STEPS_PER_MM));
}
return(0);
}