grbl-LPC-CoreXY/stepper.c
2010-03-14 23:45:31 +01:00

263 lines
8.6 KiB
C

/*
stepper.c - stepper motor interface
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. The ring buffer implementation gleaned from the wiring_serial library
by David A. Mellis */
#include "stepper.h"
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <util/delay.h>
#include "nuts_bolts.h"
#include <avr/interrupt.h>
#include "wiring_serial.h"
// Pick a suitable line-buffer size
#ifdef __AVR_ATmega328P__
#define LINE_BUFFER_SIZE 40 // Atmega 328 has one full kilobyte of extra RAM!
#else
#define LINE_BUFFER_SIZE 10
#endif
struct Line {
uint32_t steps_x, steps_y, steps_z;
int32_t maximum_steps;
uint8_t direction_bits;
uint32_t rate;
};
struct Line line_buffer[LINE_BUFFER_SIZE]; // A buffer for step instructions
volatile int line_buffer_head = 0;
volatile int line_buffer_tail = 0;
// Variables used by SIG_OUTPUT_COMPARE1A
uint8_t out_bits; // The next stepping-bits to be output
struct Line *current_line; // A pointer to the line currently being traced
volatile int32_t counter_x, counter_y, counter_z; // counter variables for the bresenham line tracer
uint32_t iterations; // The number of iterations left to complete the current_line
volatile int busy; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
void config_step_timer(uint32_t microseconds);
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds) {
// Calculate the buffer head after we push this byte
int next_buffer_head = (line_buffer_head + 1) % LINE_BUFFER_SIZE;
// If the buffer is full: good! That means we are well ahead of the robot.
// Nap until there is room in the buffer.
while(line_buffer_tail == next_buffer_head) { sleep_mode(); }
// Setup line record
struct Line *line = &line_buffer[line_buffer_head];
line->steps_x = labs(steps_x);
line->steps_y = labs(steps_y);
line->steps_z = labs(steps_z);
line->maximum_steps = max(line->steps_x, max(line->steps_y, line->steps_z));
// Bail if this is a zero-length line
if (line->maximum_steps == 0) { return; };
line->rate = microseconds/line->maximum_steps;
uint8_t direction_bits = 0;
if (steps_x < 0) { direction_bits |= (1<<X_DIRECTION_BIT); }
if (steps_y < 0) { direction_bits |= (1<<Y_DIRECTION_BIT); }
if (steps_z < 0) { direction_bits |= (1<<Z_DIRECTION_BIT); }
line->direction_bits = direction_bits;
// Move buffer head
line_buffer_head = next_buffer_head;
// enable stepper interrupt
TIMSK1 |= (1<<OCIE1A);
}
// This timer interrupt is executed at the rate set with config_step_timer. It pops one instruction from
// the line_buffer, executes it. Then it starts timer2 in order to reset the motor port after
// five microseconds.
#ifdef TIMER1_COMPA_vect
SIGNAL(TIMER1_COMPA_vect)
#else
SIGNAL(SIG_OUTPUT_COMPARE1A)
#endif
{
if(busy){ return; } // The busy-flag is used to avoid reentering this interrupt
PORTD |= (1<<3);
// Set the direction pins a cuple of nanoseconds before we step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
// Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits;
// Reset step pulse reset timer so that SIG_OVERFLOW2 can reset the signal after
// exactly settings.pulse_microseconds microseconds.
TCNT2 = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND)/8);
busy = TRUE;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// We re-enable interrupts in order for SIG_OVERFLOW2 to be able to be triggered
// at exactly the right time even if we occasionally spend a lot of time inside this handler.
// If there is no current line, attempt to pop one from the buffer
if (current_line == NULL) {
PORTD &= ~(1<<4);
// Anything in the buffer?
if (line_buffer_head != line_buffer_tail) {
PORTD ^= (1<<5);
// Retrieve a new line and get ready to step it
current_line = &line_buffer[line_buffer_tail];
config_step_timer(current_line->rate);
counter_x = -(current_line->maximum_steps >> 1);
counter_y = counter_x;
counter_z = counter_x;
iterations = current_line->maximum_steps;
} else {
// disable this interrupt until there is something to handle
TIMSK1 &= ~(1<<OCIE1A);
PORTD |= (1<<4);
}
}
if (current_line != NULL) {
out_bits = current_line->direction_bits;
counter_x += current_line->steps_x;
if (counter_x > 0) {
out_bits |= (1<<X_STEP_BIT);
counter_x -= current_line->maximum_steps;
}
counter_y += current_line->steps_y;
if (counter_y > 0) {
out_bits |= (1<<Y_STEP_BIT);
counter_y -= current_line->maximum_steps;
}
counter_z += current_line->steps_z;
if (counter_z > 0) {
out_bits |= (1<<Z_STEP_BIT);
counter_z -= current_line->maximum_steps;
}
// If current line is finished, reset pointer
iterations -= 1;
if (iterations <= 0) {
current_line = NULL;
// move the line buffer tail to the next instruction
line_buffer_tail = (line_buffer_tail + 1) % LINE_BUFFER_SIZE;
}
} else {
out_bits = 0;
}
out_bits ^= settings.invert_mask;
busy=FALSE;
PORTD &= ~(1<<3);
}
// This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets
// the motor port after a short period (settings.pulse_microseconds) completing one step cycle.
#ifdef TIMER2_OVF_vect
SIGNAL(TIMER2_OVF_vect)
#else
SIGNAL(SIG_OVERFLOW2)
#endif
{
// reset stepping pins (leave the direction pins)
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (settings.invert_mask & STEP_MASK);
}
// Initialize and start the stepper motor subsystem
void st_init()
{
// Configure directions of interface pins
STEPPING_DDR |= STEPPING_MASK;
STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | settings.invert_mask;
LIMIT_DDR &= ~(LIMIT_MASK);
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Configure Timer 2
TCCR2A = 0; // Normal operation
TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler
TIMSK2 |= (1<<TOIE2);
// Just ste the step_timer to something serviceably lazy
config_step_timer(20000);
// set enable pin
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
sei();
}
// Block until all buffered steps are executed
void st_synchronize()
{
while(line_buffer_tail != line_buffer_head) { sleep_mode(); }
}
// Cancel all buffered steps
void st_flush()
{
cli();
line_buffer_tail = line_buffer_head;
current_line = NULL;
sei();
}
// Configures the prescaler and ceiling of timer 1 to produce the given rate as accurately as possible.
void config_step_timer(uint32_t microseconds)
{
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;
uint16_t ceiling;
uint16_t prescaler;
if (ticks <= 0xffffL) {
ceiling = ticks;
prescaler = 0; // prescaler: 0
} else if (ticks <= 0x7ffffL) {
ceiling = ticks >> 3;
prescaler = 1; // prescaler: 8
} else if (ticks <= 0x3fffffL) {
ceiling = ticks >> 6;
prescaler = 2; // prescaler: 64
} else if (ticks <= 0xffffffL) {
ceiling = (ticks >> 8);
prescaler = 3; // prescaler: 256
} else if (ticks <= 0x3ffffffL) {
ceiling = (ticks >> 10);
prescaler = 4; // prescaler: 1024
} else {
// Okay, that was slower than we actually go. Just set the slowest speed
ceiling = 0xffff;
prescaler = 4;
}
// Set prescaler
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | ((prescaler+1)<<CS10);
// Set ceiling
OCR1A = ceiling;
}
void st_go_home()
{
// Todo: Perform the homing cycle
}