grbl-LPC-CoreXY/grbl/protocol.c
Sonny Jeon 5eee10845b Pin state reporting of all pins. Flash optimization.
- New pin state realtime reporting feature. Instead of `Lim:000` for
limit state reports, the new feature shows `Pin:000|0|0000`, or
something similar. The `|` delimited fields indicate xyz limits, probe,
and control pin states, where 0 is always not triggered, and 1 is
triggered. Invert masks ARE accounted for.
  Each field may be enabled or disabled via the `$10` status report
setting. The probe and control pin flags are bits 5 and 6, respectively.

- Remove the now deprecated `REPORT_CONTROL_PIN_STATE` option in
config.h

- The old limit pin reports `Lim:000` may be re-enabled by commenting
out `REPORT_ALL_PIN_STATES` in config.h.

- Incremented the version letter (v1.0c) to indicate the change in
reporting style.

- Replaced all bit_true_atomic and bit_false_atomic macros with
function calls. This saved a couple hundred bytes of flash.
2015-11-09 21:54:26 -07:00

557 lines
27 KiB
C

/*
protocol.c - controls Grbl execution protocol and procedures
Part of Grbl
Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
// Define line flags. Includes comment type tracking and line overflow detection.
#define LINE_FLAG_OVERFLOW bit(0)
#define LINE_FLAG_COMMENT_PARENTHESES bit(1)
#define LINE_FLAG_COMMENT_SEMICOLON bit(2)
static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated.
static void protocol_exec_rt_suspend();
/*
GRBL PRIMARY LOOP:
*/
void protocol_main_loop()
{
// ------------------------------------------------------------
// Complete initialization procedures upon a power-up or reset.
// ------------------------------------------------------------
// Print welcome message
report_init_message();
// Check for and report alarm state after a reset, error, or an initial power up.
if (sys.state == STATE_ALARM) {
report_feedback_message(MESSAGE_ALARM_LOCK);
} else {
// All systems go! But first check for safety door.
sys.state = STATE_IDLE;
if (system_check_safety_door_ajar()) {
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state.
}
system_execute_startup(line); // Execute startup script.
}
// ---------------------------------------------------------------------------------
// Primary loop! Upon a system abort, this exits back to main() to reset the system.
// ---------------------------------------------------------------------------------
uint8_t line_flags = 0;
uint8_t char_counter = 0;
uint8_t c;
for (;;) {
// Process one line of incoming serial data, as the data becomes available. Performs an
// initial filtering by removing spaces and comments and capitalizing all letters.
// NOTE: While comment, spaces, and block delete(if supported) handling should technically
// be done in the g-code parser, doing it here helps compress the incoming data into Grbl's
// line buffer, which is limited in size. The g-code standard actually states a line can't
// exceed 256 characters, but the Arduino Uno does not have the memory space for this.
// With a better processor, it would be very easy to pull this initial parsing out as a
// seperate task to be shared by the g-code parser and Grbl's system commands.
while((c = serial_read()) != SERIAL_NO_DATA) {
if ((c == '\n') || (c == '\r')) { // End of line reached
protocol_execute_realtime(); // Runtime command check point.
if (sys.abort) { return; } // Bail to calling function upon system abort
line[char_counter] = 0; // Set string termination character.
#ifdef REPORT_ECHO_LINE_RECEIVED
report_echo_line_received(line);
#endif
// Direct and execute one line of formatted input, and report status of execution.
if (line_flags & LINE_FLAG_OVERFLOW) {
// Report line overflow error.
report_status_message(STATUS_OVERFLOW);
} else if (line[0] == 0) {
// Empty or comment line. For syncing purposes.
report_status_message(STATUS_OK);
} else if (line[0] == '$') {
// Grbl '$' system command
report_status_message(system_execute_line(line));
} else if (sys.state == STATE_ALARM) {
// Everything else is gcode. Block if in alarm mode.
report_status_message(STATUS_ALARM_LOCK);
} else {
// Parse and execute g-code block.
report_status_message(gc_execute_line(line));
}
// Reset tracking data for next line.
line_flags = 0;
char_counter = 0;
} else {
if (line_flags) {
// Throw away all (except EOL) comment characters and overflow characters.
if (c == ')') {
// End of '()' comment. Resume line allowed.
if (line_flags & LINE_FLAG_COMMENT_PARENTHESES) { line_flags &= ~(LINE_FLAG_COMMENT_PARENTHESES); }
}
} else {
if (c <= ' ') {
// Throw away whitepace and control characters
} else if (c == '/') {
// Block delete NOT SUPPORTED. Ignore character.
// NOTE: If supported, would simply need to check the system if block delete is enabled.
} else if (c == '(') {
// Enable comments flag and ignore all characters until ')' or EOL.
// NOTE: This doesn't follow the NIST definition exactly, but is good enough for now.
// In the future, we could simply remove the items within the comments, but retain the
// comment control characters, so that the g-code parser can error-check it.
line_flags |= LINE_FLAG_COMMENT_PARENTHESES;
} else if (c == ';') {
// NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST.
line_flags |= LINE_FLAG_COMMENT_SEMICOLON;
// TODO: Install '%' feature
// } else if (c == '%') {
// Program start-end percent sign NOT SUPPORTED.
// NOTE: This maybe installed to tell Grbl when a program is running vs manual input,
// where, during a program, the system auto-cycle start will continue to execute
// everything until the next '%' sign. This will help fix resuming issues with certain
// functions that empty the planner buffer to execute its task on-time.
} else if (char_counter >= (LINE_BUFFER_SIZE-1)) {
// Detect line buffer overflow and set flag.
line_flags |= LINE_FLAG_OVERFLOW;
} else if (c >= 'a' && c <= 'z') { // Upcase lowercase
line[char_counter++] = c-'a'+'A';
} else {
line[char_counter++] = c;
}
}
}
}
// If there are no more characters in the serial read buffer to be processed and executed,
// this indicates that g-code streaming has either filled the planner buffer or has
// completed. In either case, auto-cycle start, if enabled, any queued moves.
protocol_auto_cycle_start();
protocol_execute_realtime(); // Runtime command check point.
if (sys.abort) { return; } // Bail to main() program loop to reset system.
}
return; /* Never reached */
}
// Block until all buffered steps are executed or in a cycle state. Works with feed hold
// during a synchronize call, if it should happen. Also, waits for clean cycle end.
void protocol_buffer_synchronize()
{
// If system is queued, ensure cycle resumes if the auto start flag is present.
protocol_auto_cycle_start();
do {
protocol_execute_realtime(); // Check and execute run-time commands
if (sys.abort) { return; } // Check for system abort
} while (plan_get_current_block() || (sys.state == STATE_CYCLE));
}
// Auto-cycle start has two purposes: 1. Resumes a plan_synchronize() call from a function that
// requires the planner buffer to empty (spindle enable, dwell, etc.) 2. As a user setting that
// automatically begins the cycle when a user enters a valid motion command manually. This is
// intended as a beginners feature to help new users to understand g-code. It can be disabled
// as a beginner tool, but (1.) still operates. If disabled, the operation of cycle start is
// manually issuing a cycle start command whenever the user is ready and there is a valid motion
// command in the planner queue.
// NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes
// when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming
// is finished, single commands), a command that needs to wait for the motions in the buffer to
// execute calls a buffer sync, or the planner buffer is full and ready to go.
void protocol_auto_cycle_start() { system_set_exec_state_flag(EXEC_CYCLE_START); }
// This function is the general interface to Grbl's real-time command execution system. It is called
// from various check points in the main program, primarily where there may be a while loop waiting
// for a buffer to clear space or any point where the execution time from the last check point may
// be more than a fraction of a second. This is a way to execute realtime commands asynchronously
// (aka multitasking) with grbl's g-code parsing and planning functions. This function also serves
// as an interface for the interrupts to set the system realtime flags, where only the main program
// handles them, removing the need to define more computationally-expensive volatile variables. This
// also provides a controlled way to execute certain tasks without having two or more instances of
// the same task, such as the planner recalculating the buffer upon a feedhold or overrides.
// NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
// limit switches, or the main program.
void protocol_execute_realtime()
{
protocol_exec_rt_system();
if (sys.suspend) { protocol_exec_rt_suspend(); }
}
// Executes run-time commands, when required. This function primarily operates as Grbl's state
// machine and controls the various real-time features Grbl has to offer.
// NOTE: Do not alter this unless you know exactly what you are doing!
void protocol_exec_rt_system()
{
uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times.
rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm.
if (rt_exec) { // Enter only if any bit flag is true
// System alarm. Everything has shutdown by something that has gone severely wrong. Report
// the source of the error to the user. If critical, Grbl disables by entering an infinite
// loop until system reset/abort.
sys.state = STATE_ALARM; // Set system alarm state
if (rt_exec & EXEC_ALARM_HARD_LIMIT) {
report_alarm_message(ALARM_HARD_LIMIT_ERROR);
} else if (rt_exec & EXEC_ALARM_SOFT_LIMIT) {
report_alarm_message(ALARM_SOFT_LIMIT_ERROR);
} else if (rt_exec & EXEC_ALARM_ABORT_CYCLE) {
report_alarm_message(ALARM_ABORT_CYCLE);
} else if (rt_exec & EXEC_ALARM_PROBE_FAIL) {
report_alarm_message(ALARM_PROBE_FAIL);
} else if (rt_exec & EXEC_ALARM_HOMING_FAIL) {
report_alarm_message(ALARM_HOMING_FAIL);
}
// Halt everything upon a critical event flag. Currently hard and soft limits flag this.
if (rt_exec & EXEC_CRITICAL_EVENT) {
report_feedback_message(MESSAGE_CRITICAL_EVENT);
system_clear_exec_state_flag(EXEC_RESET); // Disable any existing reset
do {
// Block everything, except reset and status reports, until user issues reset or power
// cycles. Hard limits typically occur while unattended or not paying attention. Gives
// the user and a GUI time to do what is needed before resetting, like killing the
// incoming stream. The same could be said about soft limits. While the position is not
// lost, streaming could cause a serious crash if it continues afterwards.
// TODO: Allow status reports during a critical alarm. Still need to think about implications of this.
// if (sys_rt_exec_state & EXEC_STATUS_REPORT) {
// report_realtime_status();
// system_clear_exec_state_flag(EXEC_STATUS_REPORT);
// }
} while (bit_isfalse(sys_rt_exec_state,EXEC_RESET));
}
system_clear_exec_alarm_flag(0xFF); // Clear all alarm flags
}
rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state.
if (rt_exec) {
// Execute system abort.
if (rt_exec & EXEC_RESET) {
sys.abort = true; // Only place this is set true.
return; // Nothing else to do but exit.
}
// Execute and serial print status
if (rt_exec & EXEC_STATUS_REPORT) {
report_realtime_status();
system_clear_exec_state_flag(EXEC_STATUS_REPORT);
}
// NOTE: The math involved to calculate the hold should be low enough for most, if not all,
// operational scenarios. Once hold is initiated, the system enters a suspend state to block
// all main program processes until either reset or resumed.
if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR)) {
// TODO: CHECK MODE? How to handle this? Likely nothing, since it only works when IDLE and then resets Grbl.
// State check for allowable states for hold methods.
if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOMING | STATE_MOTION_CANCEL | STATE_HOLD | STATE_SAFETY_DOOR))) {
// If in CYCLE state, all hold states immediately initiate a motion HOLD.
if (sys.state == STATE_CYCLE) {
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
sys.step_control = STEP_CONTROL_EXECUTE_HOLD; // Initiate suspend state with active flag.
}
// If IDLE, Grbl is not in motion. Simply indicate suspend state and hold is complete.
if (sys.state == STATE_IDLE) {
sys.suspend = SUSPEND_HOLD_COMPLETE;
sys.step_control = STEP_CONTROL_END_MOTION;
}
// Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle
// to halt and cancel the remainder of the motion.
if (rt_exec & EXEC_MOTION_CANCEL) {
// MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand
// to hold the CYCLE. If so, only flag that motion cancel is complete.
if (sys.state == STATE_CYCLE) { sys.state = STATE_MOTION_CANCEL; }
// NOTE: Ensures the motion cancel is handled correctly if it is active during a HOLD or DOOR state.
sys.suspend |= SUSPEND_MOTION_CANCEL; // Indicate motion cancel when resuming.
}
// Execute a feed hold with deceleration, if required. Then, suspend system.
if (rt_exec & EXEC_FEED_HOLD) {
// Block SAFETY_DOOR state from prematurely changing back to HOLD, which should only
// occur if the safety door switch closes.
if (sys.state != STATE_SAFETY_DOOR) { sys.state = STATE_HOLD; }
}
// Execute a safety door stop with a feed hold and disable spindle/coolant.
// NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered
// devices (spindle/coolant), and blocks resuming until switch is re-engaged.
if (rt_exec & EXEC_SAFETY_DOOR) {
report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR);
// Check if the safety re-opened during a restore parking motion only. Ignore if
// already retracting or parked.
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) {
if (sys.suspend & SUSPEND_INITIATE_RESTORE) { // Actively restoring
#ifdef PARKING_ENABLE
// Set hold and reset appropriate control flags to restart parking sequence.
if (sys.step_control & STEP_CONTROL_EXECUTE_PARK) {
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
sys.step_control = (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_PARK);
sys.suspend &= ~(SUSPEND_HOLD_COMPLETE);
} // else NO_MOTION is active.
#endif
sys.suspend &= ~(SUSPEND_RETRACT_COMPLETE | SUSPEND_INITIATE_RESTORE | SUSPEND_RESTORE_COMPLETE);
sys.suspend |= SUSPEND_RESTART_RETRACT;
}
}
// NOTE: This flag doesn't change when the door closes, unlike sys.state. Ensures any parking motions
// are executed if the door switch closes and the state returns to HOLD.
sys.suspend |= SUSPEND_SAFETY_DOOR_AJAR;
sys.state = STATE_SAFETY_DOOR;
}
}
system_clear_exec_state_flag((EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR));
}
// Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue.
if (rt_exec & EXEC_CYCLE_START) {
// Block if called at same time as the hold commands: feed hold, motion cancel, and safety door.
// Ensures auto-cycle-start doesn't resume a hold without an explicit user-input.
if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) {
// Cycle start only when IDLE or when a hold is complete and ready to resume.
// NOTE: SAFETY_DOOR is implicitly blocked. It reverts to HOLD when the door is closed.
if ((sys.state == STATE_IDLE) || ((sys.state & (STATE_HOLD | STATE_MOTION_CANCEL)) && (sys.suspend & SUSPEND_HOLD_COMPLETE))) {
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) {
if (sys.suspend & SUSPEND_RETRACT_COMPLETE) {
if bit_isfalse(sys.suspend,SUSPEND_RESTORE_COMPLETE) {
// Flag to re-energize powered components and restore original position, if disabled by SAFETY_DOOR.
// NOTE: For a safety door to resume, the switch must be closed, as indicated by HOLD state, and
// the retraction execution is complete, which implies the initial feed hold is not active. To
// restore normal operation, the restore procedures must be initiated by the following flag. Once,
// they are complete, it will call CYCLE_START automatically to resume and exit the suspend.
sys.suspend |= SUSPEND_INITIATE_RESTORE;
} else {
bit_false(sys.suspend,SUSPEND_SAFETY_DOOR_AJAR);
}
}
}
if (!(sys.suspend & SUSPEND_SAFETY_DOOR_AJAR)) {
// Start cycle only if queued motions exist in planner buffer and the motion is not canceled.
sys.step_control = STEP_CONTROL_NORMAL_OP; // Restore step control to normal operation
if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) {
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
sys.state = STATE_CYCLE;
st_prep_buffer(); // Initialize step segment buffer before beginning cycle.
st_wake_up();
} else { // Otherwise, do nothing. Set and resume IDLE state.
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
sys.state = STATE_IDLE;
}
}
}
}
system_clear_exec_state_flag(EXEC_CYCLE_START);
}
if (rt_exec & EXEC_CYCLE_STOP) {
// Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by
// realtime command execution in the main program, ensuring that the planner re-plans safely.
// NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
// cycle reinitializations. The stepper path should continue exactly as if nothing has happened.
// NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
if (sys.state & (STATE_HOLD | STATE_SAFETY_DOOR)) {
// Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user
// has issued a resume command or reset.
plan_cycle_reinitialize();
if (sys.step_control & STEP_CONTROL_EXECUTE_HOLD) { sys.suspend |= SUSPEND_HOLD_COMPLETE; }
bit_false(sys.step_control,(STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_PARK));
} else { // Motion is complete. Includes CYCLE, HOMING, and MOTION_CANCEL states.
sys.suspend = SUSPEND_DISABLE;
sys.state = STATE_IDLE;
}
system_clear_exec_state_flag(EXEC_CYCLE_STOP);
}
}
// Overrides flag byte (sys.override) and execution should be installed here, since they
// are realtime and require a direct and controlled interface to the main stepper program.
// Reload step segment buffer
if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_MOTION_CANCEL | STATE_SAFETY_DOOR | STATE_HOMING)) {
st_prep_buffer();
}
}
// Handles Grbl system suspend procedures, such as feed hold, safety door, and parking motion.
// The system will enter this loop, create local variables for suspend tasks, and return to
// whatever function that invoked the suspend, such that Grbl resumes normal operation.
// This function is written in a way to promote custom parking motions. Simply use this as a
// template
static void protocol_exec_rt_suspend()
{
#ifdef PARKING_ENABLE
// Declare parking local variables
float restore_target[N_AXIS];
float parking_target[N_AXIS];
float retract_waypoint = PARKING_PULLOUT_INCREMENT;
#endif
while (sys.suspend) {
if (sys.abort) { return; }
// Safety door manager. Handles de/re-energizing, switch state checks, and parking motions.
if ((sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) && (sys.suspend & SUSPEND_HOLD_COMPLETE)) {
// Handles retraction motions and de-energizing.
if (bit_isfalse(sys.suspend,SUSPEND_RETRACT_COMPLETE)) {
#ifndef PARKING_ENABLE
spindle_stop(); // De-energize
coolant_stop(); // De-energize
#else
// Get current position and store restore location and spindle retract waypoint.
system_convert_array_steps_to_mpos(parking_target,sys.position);
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
memcpy(restore_target,parking_target,sizeof(parking_target));
retract_waypoint += restore_target[PARKING_AXIS];
retract_waypoint = min(retract_waypoint,PARKING_TARGET);
}
// Execute slow pull-out parking retract motion. Parking requires homing enabled and
// the current location not exceeding the parking target location.
// NOTE: State is will remain DOOR, until the de-energizing and retract is complete.
if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) &&
(parking_target[PARKING_AXIS] < PARKING_TARGET)) {
// Retract spindle by pullout distance. Ensure retraction motion moves away from
// the workpiece and waypoint motion doesn't exceed the parking target location.
if (parking_target[PARKING_AXIS] < retract_waypoint) {
parking_target[PARKING_AXIS] = retract_waypoint;
mc_parking_motion(parking_target, PARKING_PULLOUT_RATE);
}
spindle_stop(); // De-energize
coolant_stop(); // De-energize
// Execute fast parking retract motion to parking target location.
if (parking_target[PARKING_AXIS] < PARKING_TARGET) {
parking_target[PARKING_AXIS] = PARKING_TARGET;
mc_parking_motion(parking_target, PARKING_RATE);
}
} else {
// Parking motion not possible. Just disable the spindle and coolant.
spindle_stop(); // De-energize
coolant_stop(); // De-energize
}
#endif
sys.suspend &= ~(SUSPEND_RESTART_RETRACT);
sys.suspend |= SUSPEND_RETRACT_COMPLETE;
} else {
// Allows resuming from parking/safety door. Actively checks if safety door is closed and ready to resume.
// NOTE: This unlocks the SAFETY_DOOR state to a HOLD state, such that CYCLE_START can activate a resume.
if (sys.state == STATE_SAFETY_DOOR) {
if (!(system_check_safety_door_ajar())) {
sys.state = STATE_HOLD; // Update to HOLD state to indicate door is closed and ready to resume.
}
}
// Handles parking restore and safety door resume.
if (sys.suspend & SUSPEND_INITIATE_RESTORE) {
#ifdef PARKING_ENABLE
// Execute fast restore motion to the pull-out position. Parking requires homing enabled.
// NOTE: State is will remain DOOR, until the de-energizing and retract is complete.
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
// Check to ensure the motion doesn't move below pull-out position.
if (parking_target[PARKING_AXIS] <= PARKING_TARGET) {
parking_target[PARKING_AXIS] = retract_waypoint;
mc_parking_motion(parking_target, PARKING_RATE);
}
}
#endif
// Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle.
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
// Block if safety door re-opened during prior restore actions.
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
spindle_set_state(gc_state.modal.spindle, gc_state.spindle_speed);
delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SAFETY_DOOR);
}
}
if (gc_state.modal.coolant != COOLANT_DISABLE) {
// Block if safety door re-opened during prior restore actions.
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
coolant_set_state(gc_state.modal.coolant);
delay_sec(SAFETY_DOOR_COOLANT_DELAY, DELAY_MODE_SAFETY_DOOR);
}
}
#ifdef PARKING_ENABLE
// Execute slow plunge motion from pull-out position to resume position.
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
// Block if safety door re-opened during prior restore actions.
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
// Regardless if the retract parking motion was a valid/safe motion or not, the
// restore parking motion should logically be valid, either by returning to the
// original position through valid machine space or by not moving at all.
mc_parking_motion(restore_target, PARKING_PULLOUT_RATE);
}
}
#endif
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
sys.suspend |= SUSPEND_RESTORE_COMPLETE;
system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program.
}
}
}
}
protocol_exec_rt_system();
}
}