grbl-LPC-CoreXY/settings.c
Sonny Jeon 7a175bd2db Push old dev_2 draft to work on other things.
- **NON-FUNCTIONAL**
- Contains an old draft of separating the stepper driver direct access
to the planner buffer. This is designed to keep the stepper and planner
modules independent and prevent overwriting or other complications. In
this way, feedrate override should be able to be installed as well.
- A number of planner optimizations are installed too.
- Not sure where the bugs are. Either in the new planner optimizations,
new stepper module updates, or in both. Or it just could be that the
Arduino AVR is choking with the new things it has to do.
2013-08-19 09:24:22 -06:00

243 lines
9.5 KiB
C

/*
settings.c - eeprom configuration handling
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2013 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include "protocol.h"
#include "report.h"
#include "stepper.h"
#include "nuts_bolts.h"
#include "settings.h"
#include "eeprom.h"
#include "limits.h"
settings_t settings;
// Version 4 outdated settings record
typedef struct {
float steps_per_mm[N_AXIS];
uint8_t microsteps;
uint8_t pulse_microseconds;
float default_feed_rate;
uint8_t invert_mask;
float mm_per_arc_segment;
float acceleration;
float junction_deviation;
} settings_v4_t;
// Method to store startup lines into EEPROM
void settings_store_startup_line(uint8_t n, char *line)
{
uint16_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
memcpy_to_eeprom_with_checksum(addr,(char*)line, LINE_BUFFER_SIZE);
}
// Method to store coord data parameters into EEPROM
void settings_write_coord_data(uint8_t coord_select, float *coord_data)
{
uint16_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
memcpy_to_eeprom_with_checksum(addr,(char*)coord_data, sizeof(float)*N_AXIS);
}
// Method to store Grbl global settings struct and version number into EEPROM
void write_global_settings()
{
eeprom_put_char(0, SETTINGS_VERSION);
memcpy_to_eeprom_with_checksum(EEPROM_ADDR_GLOBAL, (char*)&settings, sizeof(settings_t));
}
// Method to reset Grbl global settings back to defaults.
void settings_reset(bool reset_all) {
// Reset all settings or only the migration settings to the new version.
if (reset_all) {
settings.steps_per_mm[X_AXIS] = DEFAULT_X_STEPS_PER_MM;
settings.steps_per_mm[Y_AXIS] = DEFAULT_Y_STEPS_PER_MM;
settings.steps_per_mm[Z_AXIS] = DEFAULT_Z_STEPS_PER_MM;
settings.pulse_microseconds = DEFAULT_STEP_PULSE_MICROSECONDS;
settings.default_feed_rate = DEFAULT_FEEDRATE;
settings.max_velocity[X_AXIS] = DEFAULT_RAPID_FEEDRATE;
settings.max_velocity[Y_AXIS] = DEFAULT_RAPID_FEEDRATE;
settings.max_velocity[Z_AXIS] = DEFAULT_RAPID_FEEDRATE;
settings.acceleration[X_AXIS] = DEFAULT_ACCELERATION;
settings.acceleration[Y_AXIS] = DEFAULT_ACCELERATION;
settings.acceleration[Z_AXIS] = DEFAULT_ACCELERATION;
settings.arc_tolerance = DEFAULT_ARC_TOLERANCE;
settings.invert_mask = DEFAULT_STEPPING_INVERT_MASK;
settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION;
}
// New settings since last version
settings.flags = 0;
if (DEFAULT_REPORT_INCHES) { settings.flags |= BITFLAG_REPORT_INCHES; }
if (DEFAULT_AUTO_START) { settings.flags |= BITFLAG_AUTO_START; }
if (DEFAULT_INVERT_ST_ENABLE) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
if (DEFAULT_SOFT_LIMIT_ENABLE) { settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; }
if (DEFAULT_HARD_LIMIT_ENABLE) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
if (DEFAULT_HOMING_ENABLE) { settings.flags |= BITFLAG_HOMING_ENABLE; }
settings.homing_dir_mask = DEFAULT_HOMING_DIR_MASK;
settings.homing_feed_rate = DEFAULT_HOMING_FEEDRATE;
settings.homing_seek_rate = DEFAULT_HOMING_RAPID_FEEDRATE;
settings.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY;
settings.homing_pulloff = DEFAULT_HOMING_PULLOFF;
settings.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME;
settings.decimal_places = DEFAULT_DECIMAL_PLACES;
settings.max_travel[X_AXIS] = DEFAULT_X_MAX_TRAVEL;
settings.max_travel[Y_AXIS] = DEFAULT_Y_MAX_TRAVEL;
settings.max_travel[Z_AXIS] = DEFAULT_Z_MAX_TRAVEL;
write_global_settings();
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t settings_read_startup_line(uint8_t n, char *line)
{
uint16_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
if (!(memcpy_from_eeprom_with_checksum((char*)line, addr, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0;
settings_store_startup_line(n, line);
return(false);
} else {
return(true);
}
}
// Read selected coordinate data from EEPROM. Updates pointed coord_data value.
uint8_t settings_read_coord_data(uint8_t coord_select, float *coord_data)
{
uint16_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
if (!(memcpy_from_eeprom_with_checksum((char*)coord_data, addr, sizeof(float)*N_AXIS))) {
// Reset with default zero vector
clear_vector_float(coord_data);
settings_write_coord_data(coord_select,coord_data);
return(false);
} else {
return(true);
}
}
// Reads Grbl global settings struct from EEPROM.
uint8_t read_global_settings() {
// Check version-byte of eeprom
uint8_t version = eeprom_get_char(0);
if (version == SETTINGS_VERSION) {
// Read settings-record and check checksum
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, EEPROM_ADDR_GLOBAL, sizeof(settings_t)))) {
return(false);
}
} else {
if (version <= 4) {
// Migrate from settings version 4 to current version.
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, 1, sizeof(settings_v4_t)))) {
return(false);
}
settings_reset(false); // Old settings ok. Write new settings only.
} else {
return(false);
}
}
return(true);
}
// A helper method to set settings from command line
uint8_t settings_store_global_setting(int parameter, float value) {
switch(parameter) {
case 0: case 1: case 2:
if (value <= 0.0) { return(STATUS_SETTING_VALUE_NEG); }
settings.steps_per_mm[parameter] = value; break;
case 3: settings.max_velocity[X_AXIS] = value; break;
case 4: settings.max_velocity[Y_AXIS] = value; break;
case 5: settings.max_velocity[Z_AXIS] = value; break;
case 6: settings.acceleration[X_AXIS] = value*60*60; break; // Convert to mm/min^2 for grbl internal use.
case 7: settings.acceleration[Y_AXIS] = value*60*60; break; // Convert to mm/min^2 for grbl internal use.
case 8: settings.acceleration[Z_AXIS] = value*60*60; break; // Convert to mm/min^2 for grbl internal use.
case 9: settings.max_travel[X_AXIS] = -value; break; // Store as negative for grbl internal use.
case 10: settings.max_travel[Y_AXIS] = -value; break; // Store as negative for grbl internal use.
case 11: settings.max_travel[Z_AXIS] = -value; break; // Store as negative for grbl internal use.
case 12:
if (value < 3) { return(STATUS_SETTING_STEP_PULSE_MIN); }
settings.pulse_microseconds = round(value); break;
case 13: settings.default_feed_rate = value; break;
case 14: settings.invert_mask = trunc(value); break;
case 15: settings.stepper_idle_lock_time = round(value); break;
case 16: settings.junction_deviation = fabs(value); break;
case 17: settings.arc_tolerance = value; break;
case 18: settings.decimal_places = round(value); break;
case 19:
if (value) { settings.flags |= BITFLAG_REPORT_INCHES; }
else { settings.flags &= ~BITFLAG_REPORT_INCHES; }
break;
case 20: // Reset to ensure change. Immediate re-init may cause problems.
if (value) { settings.flags |= BITFLAG_AUTO_START; }
else { settings.flags &= ~BITFLAG_AUTO_START; }
break;
case 21: // Reset to ensure change. Immediate re-init may cause problems.
if (value) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
else { settings.flags &= ~BITFLAG_INVERT_ST_ENABLE; }
break;
case 22:
if (value) {
if (bit_isfalse(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SOFT_LIMIT_ERROR); }
settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE;
} else { settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; }
break;
case 23:
if (value) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
else { settings.flags &= ~BITFLAG_HARD_LIMIT_ENABLE; }
limits_init(); // Re-init to immediately change. NOTE: Nice to have but could be problematic later.
break;
case 24:
if (value) { settings.flags |= BITFLAG_HOMING_ENABLE; }
else {
settings.flags &= ~BITFLAG_HOMING_ENABLE;
settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE;
}
break;
case 25: settings.homing_dir_mask = trunc(value); break;
case 26: settings.homing_feed_rate = value; break;
case 27: settings.homing_seek_rate = value; break;
case 28: settings.homing_debounce_delay = round(value); break;
case 29: settings.homing_pulloff = value; break;
default:
return(STATUS_INVALID_STATEMENT);
}
write_global_settings();
return(STATUS_OK);
}
// Initialize the config subsystem
void settings_init() {
if(!read_global_settings()) {
report_status_message(STATUS_SETTING_READ_FAIL);
settings_reset(true);
report_grbl_settings();
}
// Read all parameter data into a dummy variable. If error, reset to zero, otherwise do nothing.
float coord_data[N_AXIS];
uint8_t i;
for (i=0; i<=SETTING_INDEX_NCOORD; i++) {
if (!settings_read_coord_data(i, coord_data)) {
report_status_message(STATUS_SETTING_READ_FAIL);
}
}
// NOTE: Startup lines are handled and called by main.c at the end of initialization.
}