109 lines
4.1 KiB
C
109 lines
4.1 KiB
C
/*
|
|
main.c - An embedded CNC Controller with rs274/ngc (g-code) support
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
Copyright (c) 2011-2012 Sungeun K. Jeon
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* A big thanks to Alden Hart of Synthetos, supplier of grblshield and TinyG, who has
|
|
been integral throughout the development of the higher level details of Grbl, as well
|
|
as being a consistent sounding board for the future of accessible and free CNC. */
|
|
|
|
#include <avr/interrupt.h>
|
|
#include <avr/pgmspace.h>
|
|
#include "config.h"
|
|
#include "planner.h"
|
|
#include "nuts_bolts.h"
|
|
#include "stepper.h"
|
|
#include "spindle_control.h"
|
|
#include "coolant_control.h"
|
|
#include "motion_control.h"
|
|
#include "gcode.h"
|
|
#include "protocol.h"
|
|
#include "limits.h"
|
|
#include "report.h"
|
|
#include "settings.h"
|
|
#include "serial.h"
|
|
|
|
// Declare system global variable structure
|
|
system_t sys;
|
|
|
|
int main(void)
|
|
{
|
|
// Initialize system
|
|
serial_init(); // Setup serial baud rate and interrupts
|
|
settings_init(); // Load grbl settings from EEPROM
|
|
st_init(); // Setup stepper pins and interrupt timers
|
|
sei(); // Enable interrupts
|
|
|
|
memset(&sys, 0, sizeof(sys)); // Clear all system variables
|
|
sys.abort = true; // Set abort to complete initialization
|
|
sys.state = STATE_INIT; // Set alarm state to indicate unknown initial position
|
|
|
|
for(;;) {
|
|
|
|
// Execute system reset upon a system abort, where the main program will return to this loop.
|
|
// Once here, it is safe to re-initialize the system. At startup, the system will automatically
|
|
// reset to finish the initialization process.
|
|
if (sys.abort) {
|
|
// Reset system.
|
|
serial_reset_read_buffer(); // Clear serial read buffer
|
|
plan_init(); // Clear block buffer and planner variables
|
|
gc_init(); // Set g-code parser to default state
|
|
protocol_init(); // Clear incoming line data and execute startup lines
|
|
spindle_init();
|
|
coolant_init();
|
|
limits_init();
|
|
st_reset(); // Clear stepper subsystem variables.
|
|
|
|
// Sync cleared gcode and planner positions to current system position, which is only
|
|
// cleared upon startup, not a reset/abort.
|
|
sys_sync_current_position();
|
|
|
|
// Reset system variables.
|
|
sys.abort = false;
|
|
sys.execute = 0;
|
|
if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) { sys.auto_start = true; }
|
|
|
|
// Check for power-up and set system alarm if homing is enabled to force homing cycle
|
|
// by setting Grbl's alarm state. Alarm locks out all g-code commands, including the
|
|
// startup scripts, but allows access to settings and internal commands. Only a homing
|
|
// cycle '$H' or kill alarm locks '$X' will disable the alarm.
|
|
// NOTE: The startup script will run after successful completion of the homing cycle, but
|
|
// not after disabling the alarm locks. Prevents motion startup blocks from crashing into
|
|
// things uncontrollably. Very bad.
|
|
#ifdef HOMING_INIT_LOCK
|
|
if (sys.state == STATE_INIT && bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { sys.state = STATE_ALARM; }
|
|
#endif
|
|
|
|
// Check for and report alarm state after a reset, error, or an initial power up.
|
|
if (sys.state == STATE_ALARM) {
|
|
report_feedback_message(MESSAGE_ALARM_LOCK);
|
|
} else {
|
|
// All systems go. Set system to ready and execute startup script.
|
|
sys.state = STATE_IDLE;
|
|
protocol_execute_startup();
|
|
}
|
|
}
|
|
|
|
protocol_execute_runtime();
|
|
protocol_process(); // ... process the serial protocol
|
|
|
|
}
|
|
return 0; /* never reached */
|
|
}
|