/* protocol.c - the serial protocol master control unit Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2011-2012 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include #include "protocol.h" #include "gcode.h" #include "serial.h" #include "print.h" #include "settings.h" #include "config.h" #include #include "nuts_bolts.h" #include #include "stepper.h" #include "planner.h" #include "report.h" #include "motion_control.h" static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated. static uint8_t char_counter; // Last character counter in line variable. static uint8_t iscomment; // Comment/block delete flag for processor to ignore comment characters. void protocol_init() { char_counter = 0; // Reset line input iscomment = false; } // Executes run-time commands, when required. This is called from various check points in the main // program, primarily where there may be a while loop waiting for a buffer to clear space or any // point where the execution time from the last check point may be more than a fraction of a second. // This is a way to execute runtime commands asynchronously (aka multitasking) with grbl's g-code // parsing and planning functions. This function also serves as an interface for the interrupts to // set the system runtime flags, where only the main program handles them, removing the need to // define more computationally-expensive volatile variables. This also provides a controlled way to // execute certain tasks without having two or more instances of the same task, such as the planner // recalculating the buffer upon a feedhold or override. // NOTE: The sys.execute variable flags are set by the serial read subprogram, except where noted, // but may be set by any process, such as a switch pin change interrupt when pinouts are installed. void protocol_execute_runtime() { if (sys.execute) { // Enter only if any bit flag is true uint8_t rt_exec = sys.execute; // Avoid calling volatile multiple times // System alarm. Something has gone wrong. Disable everything by entering an infinite // loop until system reset/abort. if (rt_exec & EXEC_ALARM) { if (bit_isfalse(rt_exec,EXEC_RESET)) { // Ignore loop if reset is already issued report_feedback_message(MESSAGE_SYSTEM_ALARM); while (bit_isfalse(sys.execute,EXEC_RESET)) { sleep_mode(); } } bit_false(sys.execute,EXEC_ALARM); } // System abort. Steppers have already been force stopped. if (rt_exec & EXEC_RESET) { sys.abort = true; // If the cycle is active before killing the motion, the event will likely caused a loss // of position since there is no controlled deceleration(feed hold) to a stop. // TODO: Add force home option upon position lost. Need to verify that cycle start isn't // set false by anything but the stepper module. Also, need to look at a better place for // this. Main.c? // if (sys.cycle_start) { protocol_feedback_message(MESSAGE_POSITION_LOST); } return; // Nothing else to do but exit. } // Execute and serial print status if (rt_exec & EXEC_STATUS_REPORT) { report_realtime_status(); bit_false(sys.execute,EXEC_STATUS_REPORT); } // Initiate stepper feed hold if (rt_exec & EXEC_FEED_HOLD) { st_feed_hold(); // Initiate feed hold. bit_false(sys.execute,EXEC_FEED_HOLD); } // Reinitializes the stepper module running flags and re-plans the buffer after a feed hold. // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. if (rt_exec & EXEC_CYCLE_STOP) { st_cycle_reinitialize(); bit_false(sys.execute,EXEC_CYCLE_STOP); } if (rt_exec & EXEC_CYCLE_START) { st_cycle_start(); // Issue cycle start command to stepper subsystem if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) { sys.auto_start = true; // Re-enable auto start after feed hold. } bit_false(sys.execute,EXEC_CYCLE_START); } } // Overrides flag byte (sys.override) and execution should be installed here, since they // are runtime and require a direct and controlled interface to the main stepper program. } // Directs and executes one line of formatted input from protocol_process. While mostly // incoming streaming g-code blocks, this also executes Grbl internal commands, such as // settings, initiating the homing cycle, and toggling switch states. This differs from // the runtime command module by being susceptible to when Grbl is ready to execute the // next line during a cycle, so for switches like block delete, the switch only effects // the lines that are processed afterward, not necessarily real-time during a cycle, // since there are motions already stored in the buffer. However, this 'lag' should not // be an issue, since these commands are not typically used during a cycle. uint8_t protocol_execute_line(char *line) { // Grbl internal command and parameter lines are of the form '$4=374.3' or '$' for help if(line[0] == '$') { uint8_t char_counter = 1; float parameter, value; switch( line[char_counter] ) { case 0 : report_grbl_help(); return(STATUS_OK); break; // case '#' : // if ( line[++char_counter] == 0 ) { // // Print all parameters // return(STATUS_OK); // } else { // return(STATUS_UNSUPPORTED_STATEMENT); // } // case 'G' : // Start up blocks // if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } // if(line[char_counter++] != '=') { return(STATUS_UNSUPPORTED_STATEMENT); } // // Extract startup block, execute, and store. // for (char_counter = 0; char_counter < LINE_BUFFER_SIZE-3; char_counter++) { // line[char_counter] = line[char_counter+3]; // } // uint8_t status = gc_execute_line(line); // if (status) { return(status); } // else { settings_store_startup_block(line); } // break; case 'H' : // Perform homing cycle if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { mc_go_home(); return(STATUS_OK); } else { return(STATUS_SETTING_DISABLED); } break; // // case 'J' : break; // Jogging methods // // TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be // // susceptible to other runtime commands except for e-stop. The jogging function is intended to // // be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped // // steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would // // start motion and toggle off would initiate a deceleration to stop. One could 'feather' the // // motion by repeatedly toggling to slow the motion to the desired location. Location data would // // need to be updated real-time and supplied to the user through status queries. // // More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are // // handled by the planner. It would be possible for the jog subprogram to insert blocks into the // // block buffer without having the planner plan them. It would need to manage de/ac-celerations // // on its own carefully. This approach could be effective and possibly size/memory efficient. // case 'P' : // Print g-code parameters and parser state // if(line[char_counter] != 0) { return(STATUS_UNSUPPORTED_STATEMENT); } // // break; // case 'S' : // Switch methods // // Opt stop and block delete are referred to as switches. // // How to store home position and work offsets real-time?? // break; // // Parse $parameter=value settings default : if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter++] != '=') { return(STATUS_UNSUPPORTED_STATEMENT); } if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter] != 0) { return(STATUS_UNSUPPORTED_STATEMENT); } return(settings_store_global_setting(parameter, value)); } } else { return(gc_execute_line(line)); // Everything else is gcode // TODO: Install option to set system alarm upon any error code received back from the // the g-code parser. This is a common safety feature on CNCs to help prevent crashes // if the g-code doesn't perform as intended. } } // Process and report status one line of incoming serial data. Performs an initial filtering // by removing spaces and comments and capitalizing all letters. void protocol_process() { uint8_t c; while((c = serial_read()) != SERIAL_NO_DATA) { if ((c == '\n') || (c == '\r')) { // End of line reached // Runtime command check point before executing line. Prevent any furthur line executions. // NOTE: If there is no line, this function should quickly return to the main program when // the buffer empties of non-executable data. protocol_execute_runtime(); if (sys.abort) { return; } // Bail to main program upon system abort if (char_counter > 0) {// Line is complete. Then execute! line[char_counter] = 0; // Terminate string report_status_message(protocol_execute_line(line)); } else { // Empty or comment line. Skip block. report_status_message(STATUS_OK); // Send status message for syncing purposes. } char_counter = 0; // Reset line buffer index iscomment = false; // Reset comment flag } else { if (iscomment) { // Throw away all comment characters if (c == ')') { // End of comment. Resume line. iscomment = false; } } else { if (c <= ' ') { // Throw away whitepace and control characters } else if (c == '/') { // Disable block delete and throw away characters. Will ignore until EOL. #if BLOCK_DELETE_ENABLE iscomment = true; #endif } else if (c == '(') { // Enable comments flag and ignore all characters until ')' or EOL. iscomment = true; } else if (char_counter >= LINE_BUFFER_SIZE-1) { // Throw away any characters beyond the end of the line buffer } else if (c >= 'a' && c <= 'z') { // Upcase lowercase line[char_counter++] = c-'a'+'A'; } else { line[char_counter++] = c; } } } } }