/* system.c - Handles system level commands and real-time processes Part of Grbl Copyright (c) 2014-2015 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include "grbl.h" void system_init() { CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins #ifdef DISABLE_CONTROL_PIN_PULL_UP CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down. #else CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation. #endif CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt } // Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets // only the realtime command execute variable to have the main program execute these when // its ready. This works exactly like the character-based realtime commands when picked off // directly from the incoming serial data stream. ISR(CONTROL_INT_vect) { uint8_t pin = (CONTROL_PIN & CONTROL_MASK); #ifndef INVERT_ALL_CONTROL_PINS pin ^= CONTROL_INVERT_MASK; #endif // Enter only if any CONTROL pin is detected as active. if (pin) { if (bit_istrue(pin,bit(RESET_BIT))) { mc_reset(); } else if (bit_istrue(pin,bit(CYCLE_START_BIT))) { bit_true(sys.rt_exec_state, EXEC_CYCLE_START); #ifndef ENABLE_SAFETY_DOOR_INPUT_PIN } else if (bit_istrue(pin,bit(FEED_HOLD_BIT))) { bit_true(sys.rt_exec_state, EXEC_FEED_HOLD); #else } else if (bit_istrue(pin,bit(SAFETY_DOOR_BIT))) { bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR); #endif } } } // Returns if safety door is ajar(T) or closed(F), based on pin state. uint8_t system_check_safety_door_ajar() { #ifdef ENABLE_SAFETY_DOOR_INPUT_PIN #ifdef INVERT_CONTROL_PIN return(bit_istrue(CONTROL_PIN,bit(SAFETY_DOOR_BIT))); #else return(bit_isfalse(CONTROL_PIN,bit(SAFETY_DOOR_BIT))); #endif #else return(false); // Input pin not enabled, so just return that it's closed. #endif } // Executes user startup script, if stored. void system_execute_startup(char *line) { uint8_t n; for (n=0; n < N_STARTUP_LINE; n++) { if (!(settings_read_startup_line(n, line))) { report_status_message(STATUS_SETTING_READ_FAIL); } else { if (line[0] != 0) { printString(line); // Echo startup line to indicate execution. report_status_message(gc_execute_line(line)); } } } } // Directs and executes one line of formatted input from protocol_process. While mostly // incoming streaming g-code blocks, this also executes Grbl internal commands, such as // settings, initiating the homing cycle, and toggling switch states. This differs from // the realtime command module by being susceptible to when Grbl is ready to execute the // next line during a cycle, so for switches like block delete, the switch only effects // the lines that are processed afterward, not necessarily real-time during a cycle, // since there are motions already stored in the buffer. However, this 'lag' should not // be an issue, since these commands are not typically used during a cycle. uint8_t system_execute_line(char *line) { uint8_t char_counter = 1; uint8_t helper_var = 0; // Helper variable float parameter, value; switch( line[char_counter] ) { case 0 : report_grbl_help(); break; case '$': case 'G': case 'C': case 'X': if ( line[(char_counter+1)] != 0 ) { return(STATUS_INVALID_STATEMENT); } switch( line[char_counter] ) { case '$' : // Prints Grbl settings if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print. else { report_grbl_settings(); } break; case 'G' : // Prints gcode parser state // TODO: Move this to realtime commands for GUIs to request this data during suspend-state. report_gcode_modes(); break; case 'C' : // Set check g-code mode [IDLE/CHECK] // Perform reset when toggling off. Check g-code mode should only work if Grbl // is idle and ready, regardless of alarm locks. This is mainly to keep things // simple and consistent. if ( sys.state == STATE_CHECK_MODE ) { mc_reset(); report_feedback_message(MESSAGE_DISABLED); } else { if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode. sys.state = STATE_CHECK_MODE; report_feedback_message(MESSAGE_ENABLED); } break; case 'X' : // Disable alarm lock [ALARM] if (sys.state == STATE_ALARM) { // Block if safety door is ajar. if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } report_feedback_message(MESSAGE_ALARM_UNLOCK); sys.state = STATE_IDLE; // Don't run startup script. Prevents stored moves in startup from causing accidents. } // Otherwise, no effect. break; // case 'J' : break; // Jogging methods // TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be // susceptible to other realtime commands except for e-stop. The jogging function is intended to // be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped // steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would // start motion and toggle off would initiate a deceleration to stop. One could 'feather' the // motion by repeatedly toggling to slow the motion to the desired location. Location data would // need to be updated real-time and supplied to the user through status queries. // More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are // handled by the planner. It would be possible for the jog subprogram to insert blocks into the // block buffer without having the planner plan them. It would need to manage de/ac-celerations // on its own carefully. This approach could be effective and possibly size/memory efficient. } break; default : // Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing) if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); } switch( line[char_counter] ) { case '#' : // Print Grbl NGC parameters if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); } else { report_ngc_parameters(); } break; case 'H' : // Perform homing cycle [IDLE/ALARM] if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { // Block if safety door is ajar. if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } sys.state = STATE_HOMING; // Set system state variable mc_homing_cycle(); if (!sys.abort) { // Execute startup scripts after successful homing. sys.state = STATE_IDLE; // Set to IDLE when complete. st_go_idle(); // Set steppers to the settings idle state before returning. system_execute_startup(line); } } else { return(STATUS_SETTING_DISABLED); } break; case 'I' : // Print or store build info. [IDLE/ALARM] if ( line[++char_counter] == 0 ) { settings_read_build_info(line); report_build_info(line); } else { // Store startup line [IDLE/ALARM] if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } helper_var = char_counter; // Set helper variable as counter to start of user info line. do { line[char_counter-helper_var] = line[char_counter]; } while (line[char_counter++] != 0); settings_store_build_info(line); } break; case 'R' : // Restore defaults [IDLE/ALARM] if (line[++char_counter] != 'S') { return(STATUS_INVALID_STATEMENT); } if (line[++char_counter] != 'T') { return(STATUS_INVALID_STATEMENT); } if (line[++char_counter] != '=') { return(STATUS_INVALID_STATEMENT); } if (line[char_counter+2] != 0) { return(STATUS_INVALID_STATEMENT); } switch (line[++char_counter]) { case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break; case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break; case '*': settings_restore(SETTINGS_RESTORE_ALL); break; default: return(STATUS_INVALID_STATEMENT); } report_feedback_message(MESSAGE_RESTORE_DEFAULTS); mc_reset(); // Force reset to ensure settings are initialized correctly. break; case 'N' : // Startup lines. [IDLE/ALARM] if ( line[++char_counter] == 0 ) { // Print startup lines for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) { if (!(settings_read_startup_line(helper_var, line))) { report_status_message(STATUS_SETTING_READ_FAIL); } else { report_startup_line(helper_var,line); } } break; } else { // Store startup line [IDLE Only] Prevents motion during ALARM. if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle. helper_var = true; // Set helper_var to flag storing method. // No break. Continues into default: to read remaining command characters. } default : // Storing setting methods [IDLE/ALARM] if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } if (helper_var) { // Store startup line // Prepare sending gcode block to gcode parser by shifting all characters helper_var = char_counter; // Set helper variable as counter to start of gcode block do { line[char_counter-helper_var] = line[char_counter]; } while (line[char_counter++] != 0); // Execute gcode block to ensure block is valid. helper_var = gc_execute_line(line); // Set helper_var to returned status code. if (helper_var) { return(helper_var); } else { helper_var = trunc(parameter); // Set helper_var to int value of parameter settings_store_startup_line(helper_var,line); } } else { // Store global setting. if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); } if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); } return(settings_store_global_setting((uint8_t)parameter, value)); } } } return(STATUS_OK); // If '$' command makes it to here, then everything's ok. } // Returns machine position of axis 'idx'. Must be sent a 'step' array. // NOTE: If motor steps and machine position are not in the same coordinate frame, this function // serves as a central place to compute the transformation. float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx) { float pos; #ifdef COREXY if (idx==A_MOTOR) { pos = 0.5*((steps[A_MOTOR] + steps[B_MOTOR])/settings.steps_per_mm[idx]); } else if (idx==B_MOTOR) { pos = 0.5*((steps[A_MOTOR] - steps[B_MOTOR])/settings.steps_per_mm[idx]); } else { pos = steps[idx]/settings.steps_per_mm[idx]; } #else pos = steps[idx]/settings.steps_per_mm[idx]; #endif return(pos); } void system_convert_array_steps_to_mpos(float *position, int32_t *steps) { uint8_t idx; for (idx=0; idx