/* protocol.c - controls Grbl execution protocol and procedures Part of Grbl Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include "grbl.h" // Define line flags. Includes comment type tracking and line overflow detection. #define LINE_FLAG_OVERFLOW bit(0) #define LINE_FLAG_COMMENT_PARENTHESES bit(1) #define LINE_FLAG_COMMENT_SEMICOLON bit(2) static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated. static void protocol_exec_rt_suspend(); /* GRBL PRIMARY LOOP: */ void protocol_main_loop() { // Perform some machine checks to make sure everything is good to go. #ifdef CHECK_LIMITS_AT_INIT if (bit_istrue(settings.flags, BITFLAG_HARD_LIMIT_ENABLE)) { if (limits_get_state()) { sys.state = STATE_ALARM; // Ensure alarm state is active. report_feedback_message(MESSAGE_CHECK_LIMITS); } } #endif // Check for and report alarm state after a reset, error, or an initial power up. // NOTE: Sleep mode disables the stepper drivers and position can't be guaranteed. // Re-initialize the sleep state as an ALARM mode to ensure user homes or acknowledges. if (sys.state & (STATE_ALARM | STATE_SLEEP)) { report_feedback_message(MESSAGE_ALARM_LOCK); sys.state = STATE_ALARM; // Ensure alarm state is set. } else { // Check if the safety door is open. sys.state = STATE_IDLE; if (system_check_safety_door_ajar()) { bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR); protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state. } // All systems go! system_execute_startup(line); // Execute startup script. } // --------------------------------------------------------------------------------- // Primary loop! Upon a system abort, this exits back to main() to reset the system. // This is also where Grbl idles while waiting for something to do. // --------------------------------------------------------------------------------- uint8_t line_flags = 0; uint8_t char_counter = 0; uint8_t c; for (;;) { // Process one line of incoming serial data, as the data becomes available. Performs an // initial filtering by removing spaces and comments and capitalizing all letters. while((c = serial_read()) != SERIAL_NO_DATA) { if ((c == '\n') || (c == '\r')) { // End of line reached protocol_execute_realtime(); // Runtime command check point. if (sys.abort) { return; } // Bail to calling function upon system abort line[char_counter] = 0; // Set string termination character. #ifdef REPORT_ECHO_LINE_RECEIVED report_echo_line_received(line); #endif // Direct and execute one line of formatted input, and report status of execution. if (line_flags & LINE_FLAG_OVERFLOW) { // Report line overflow error. report_status_message(STATUS_OVERFLOW); } else if (line[0] == 0) { // Empty or comment line. For syncing purposes. report_status_message(STATUS_OK); } else if (line[0] == '$') { // Grbl '$' system command report_status_message(system_execute_line(line)); } else if (sys.state & (STATE_ALARM | STATE_JOG)) { // Everything else is gcode. Block if in alarm or jog mode. report_status_message(STATUS_SYSTEM_GC_LOCK); } else { // Parse and execute g-code block. report_status_message(gc_execute_line(line)); } // Reset tracking data for next line. line_flags = 0; char_counter = 0; } else { if (line_flags) { // Throw away all (except EOL) comment characters and overflow characters. if (c == ')') { // End of '()' comment. Resume line allowed. if (line_flags & LINE_FLAG_COMMENT_PARENTHESES) { line_flags &= ~(LINE_FLAG_COMMENT_PARENTHESES); } } } else { if (c <= ' ') { // Throw away whitepace and control characters } else if (c == '/') { // Block delete NOT SUPPORTED. Ignore character. // NOTE: If supported, would simply need to check the system if block delete is enabled. } else if (c == '(') { // Enable comments flag and ignore all characters until ')' or EOL. // NOTE: This doesn't follow the NIST definition exactly, but is good enough for now. // In the future, we could simply remove the items within the comments, but retain the // comment control characters, so that the g-code parser can error-check it. line_flags |= LINE_FLAG_COMMENT_PARENTHESES; } else if (c == ';') { // NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST. line_flags |= LINE_FLAG_COMMENT_SEMICOLON; // TODO: Install '%' feature // } else if (c == '%') { // Program start-end percent sign NOT SUPPORTED. // NOTE: This maybe installed to tell Grbl when a program is running vs manual input, // where, during a program, the system auto-cycle start will continue to execute // everything until the next '%' sign. This will help fix resuming issues with certain // functions that empty the planner buffer to execute its task on-time. } else if (char_counter >= (LINE_BUFFER_SIZE-1)) { // Detect line buffer overflow and set flag. line_flags |= LINE_FLAG_OVERFLOW; } else if (c >= 'a' && c <= 'z') { // Upcase lowercase line[char_counter++] = c-'a'+'A'; } else { line[char_counter++] = c; } } } } // If there are no more characters in the serial read buffer to be processed and executed, // this indicates that g-code streaming has either filled the planner buffer or has // completed. In either case, auto-cycle start, if enabled, any queued moves. protocol_auto_cycle_start(); protocol_execute_realtime(); // Runtime command check point. if (sys.abort) { return; } // Bail to main() program loop to reset system. } return; /* Never reached */ } // Block until all buffered steps are executed or in a cycle state. Works with feed hold // during a synchronize call, if it should happen. Also, waits for clean cycle end. void protocol_buffer_synchronize() { // If system is queued, ensure cycle resumes if the auto start flag is present. protocol_auto_cycle_start(); do { protocol_execute_realtime(); // Check and execute run-time commands if (sys.abort) { return; } // Check for system abort } while (plan_get_current_block() || (sys.state == STATE_CYCLE)); } // Auto-cycle start triggers when there is a motion ready to execute and if the main program is not // actively parsing commands. // NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes // when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming // is finished, single commands), a command that needs to wait for the motions in the buffer to // execute calls a buffer sync, or the planner buffer is full and ready to go. void protocol_auto_cycle_start() { if (plan_get_current_block() != NULL) { // Check if there are any blocks in the buffer. system_set_exec_state_flag(EXEC_CYCLE_START); // If so, execute them! } } // This function is the general interface to Grbl's real-time command execution system. It is called // from various check points in the main program, primarily where there may be a while loop waiting // for a buffer to clear space or any point where the execution time from the last check point may // be more than a fraction of a second. This is a way to execute realtime commands asynchronously // (aka multitasking) with grbl's g-code parsing and planning functions. This function also serves // as an interface for the interrupts to set the system realtime flags, where only the main program // handles them, removing the need to define more computationally-expensive volatile variables. This // also provides a controlled way to execute certain tasks without having two or more instances of // the same task, such as the planner recalculating the buffer upon a feedhold or overrides. // NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts, // limit switches, or the main program. void protocol_execute_realtime() { protocol_exec_rt_system(); if (sys.suspend) { protocol_exec_rt_suspend(); } } // Executes run-time commands, when required. This function primarily operates as Grbl's state // machine and controls the various real-time features Grbl has to offer. // NOTE: Do not alter this unless you know exactly what you are doing! void protocol_exec_rt_system() { uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times. rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm. if (rt_exec) { // Enter only if any bit flag is true // System alarm. Everything has shutdown by something that has gone severely wrong. Report // the source of the error to the user. If critical, Grbl disables by entering an infinite // loop until system reset/abort. sys.state = STATE_ALARM; // Set system alarm state report_alarm_message(rt_exec); // Halt everything upon a critical event flag. Currently hard and soft limits flag this. if ((rt_exec == EXEC_ALARM_HARD_LIMIT) || (rt_exec == EXEC_ALARM_SOFT_LIMIT)) { report_feedback_message(MESSAGE_CRITICAL_EVENT); system_clear_exec_state_flag(EXEC_RESET); // Disable any existing reset do { // Block everything, except reset and status reports, until user issues reset or power // cycles. Hard limits typically occur while unattended or not paying attention. Gives // the user and a GUI time to do what is needed before resetting, like killing the // incoming stream. The same could be said about soft limits. While the position is not // lost, continued streaming could cause a serious crash if by chance it gets executed. } while (bit_isfalse(sys_rt_exec_state,EXEC_RESET)); } system_clear_exec_alarm_flag(0xFF); // Clear all alarm flags } rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state. if (rt_exec) { // Execute system abort. if (rt_exec & EXEC_RESET) { sys.abort = true; // Only place this is set true. return; // Nothing else to do but exit. } // Execute and serial print status if (rt_exec & EXEC_STATUS_REPORT) { report_realtime_status(); system_clear_exec_state_flag(EXEC_STATUS_REPORT); } // NOTE: Once hold is initiated, the system immediately enters a suspend state to block all // main program processes until either reset or resumed. This ensures a hold completes safely. if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)) { // State check for allowable states for hold methods. if (!(sys.state & (STATE_ALARM | STATE_CHECK_MODE))) { // If in CYCLE or JOG states, immediately initiate a motion HOLD. if (sys.state & (STATE_CYCLE | STATE_JOG)) { if (!(sys.suspend & (SUSPEND_MOTION_CANCEL | SUSPEND_JOG_CANCEL))) { // Block, if already holding. st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. sys.step_control = STEP_CONTROL_EXECUTE_HOLD; // Initiate suspend state with active flag. if (sys.state == STATE_JOG) { // Jog cancelled upon any hold event, except for sleeping. if (!(rt_exec & EXEC_SLEEP)) { sys.suspend |= SUSPEND_JOG_CANCEL; } } } } // If IDLE, Grbl is not in motion. Simply indicate suspend state and hold is complete. if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_HOLD_COMPLETE; } // Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle // to halt and cancel the remainder of the motion. if (rt_exec & EXEC_MOTION_CANCEL) { // MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand // to hold the CYCLE. Motion cancel is valid for a single planner block motion only, while jog cancel // will handle and clear multiple planner block motions. if (!(sys.state & STATE_JOG)) { sys.suspend |= SUSPEND_MOTION_CANCEL; } // NOTE: State is STATE_CYCLE. } // Execute a feed hold with deceleration, if required. Then, suspend system. if (rt_exec & EXEC_FEED_HOLD) { // Block SAFETY_DOOR, JOG, and SLEEP states from changing to HOLD state. if (!(sys.state & (STATE_SAFETY_DOOR | STATE_JOG | STATE_SLEEP))) { sys.state = STATE_HOLD; } } // Execute a safety door stop with a feed hold and disable spindle/coolant. // NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered // devices (spindle/coolant), and blocks resuming until switch is re-engaged. if (rt_exec & EXEC_SAFETY_DOOR) { report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR); // If jogging, block safety door methods until jog cancel is complete. Just flag that it happened. if (!(sys.suspend & SUSPEND_JOG_CANCEL)) { // Check if the safety re-opened during a restore parking motion only. Ignore if // already retracting, parked or in sleep state. if (sys.state == STATE_SAFETY_DOOR) { if (sys.suspend & SUSPEND_INITIATE_RESTORE) { // Actively restoring #ifdef PARKING_ENABLE // Set hold and reset appropriate control flags to restart parking sequence. if (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION) { st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. sys.step_control = (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION); sys.suspend &= ~(SUSPEND_HOLD_COMPLETE); } // else NO_MOTION is active. #endif sys.suspend &= ~(SUSPEND_RETRACT_COMPLETE | SUSPEND_INITIATE_RESTORE | SUSPEND_RESTORE_COMPLETE); sys.suspend |= SUSPEND_RESTART_RETRACT; } } if (sys.state != STATE_SLEEP) { sys.state = STATE_SAFETY_DOOR; } } // NOTE: This flag doesn't change when the door closes, unlike sys.state. Ensures any parking motions // are executed if the door switch closes and the state returns to HOLD. sys.suspend |= SUSPEND_SAFETY_DOOR_AJAR; } } if (rt_exec & EXEC_SLEEP) { if (sys.state == STATE_ALARM) { sys.suspend |= (SUSPEND_RETRACT_COMPLETE|SUSPEND_HOLD_COMPLETE); } sys.state = STATE_SLEEP; } system_clear_exec_state_flag((EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)); } // Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue. if (rt_exec & EXEC_CYCLE_START) { // Block if called at same time as the hold commands: feed hold, motion cancel, and safety door. // Ensures auto-cycle-start doesn't resume a hold without an explicit user-input. if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) { // Resume door state when parking motion has retracted and door has been closed. if ((sys.state == STATE_SAFETY_DOOR) && !(sys.suspend & SUSPEND_SAFETY_DOOR_AJAR)) { if (sys.suspend & SUSPEND_RESTORE_COMPLETE) { sys.state = STATE_IDLE; // Set to IDLE to immediately resume the cycle. } else if (sys.suspend & SUSPEND_RETRACT_COMPLETE) { // Flag to re-energize powered components and restore original position, if disabled by SAFETY_DOOR. // NOTE: For a safety door to resume, the switch must be closed, as indicated by HOLD state, and // the retraction execution is complete, which implies the initial feed hold is not active. To // restore normal operation, the restore procedures must be initiated by the following flag. Once, // they are complete, it will call CYCLE_START automatically to resume and exit the suspend. sys.suspend |= SUSPEND_INITIATE_RESTORE; } } // Cycle start only when IDLE or when a hold is complete and ready to resume. if ((sys.state == STATE_IDLE) || ((sys.state & STATE_HOLD) && (sys.suspend & SUSPEND_HOLD_COMPLETE))) { if (sys.state == STATE_HOLD && sys.spindle_stop_ovr) { sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE_CYCLE; // Set to restore in suspend routine and cycle start after. } else { // Start cycle only if queued motions exist in planner buffer and the motion is not canceled. sys.step_control = STEP_CONTROL_NORMAL_OP; // Restore step control to normal operation if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) { sys.suspend = SUSPEND_DISABLE; // Break suspend state. sys.state = STATE_CYCLE; st_prep_buffer(); // Initialize step segment buffer before beginning cycle. st_wake_up(); } else { // Otherwise, do nothing. Set and resume IDLE state. sys.suspend = SUSPEND_DISABLE; // Break suspend state. sys.state = STATE_IDLE; } } } } system_clear_exec_state_flag(EXEC_CYCLE_START); } if (rt_exec & EXEC_CYCLE_STOP) { // Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by // realtime command execution in the main program, ensuring that the planner re-plans safely. // NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper // cycle reinitializations. The stepper path should continue exactly as if nothing has happened. // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. if ((sys.state & (STATE_HOLD|STATE_SAFETY_DOOR|STATE_SLEEP)) && !(sys.soft_limit) && !(sys.suspend & SUSPEND_JOG_CANCEL)) { // Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user // has issued a resume command or reset. plan_cycle_reinitialize(); if (sys.step_control & STEP_CONTROL_EXECUTE_HOLD) { sys.suspend |= SUSPEND_HOLD_COMPLETE; } bit_false(sys.step_control,(STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION)); } else { // Motion complete. Includes CYCLE/JOG/HOMING states and jog cancel/motion cancel/soft limit events. // NOTE: Motion and jog cancel both immediately return to idle after the hold completes. if (sys.suspend & SUSPEND_JOG_CANCEL) { // For jog cancel, flush buffers and sync positions. sys.step_control = STEP_CONTROL_NORMAL_OP; plan_reset(); st_reset(); gc_sync_position(); plan_sync_position(); } if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) { // Only occurs when safety door opens during jog. sys.suspend &= ~(SUSPEND_JOG_CANCEL); sys.suspend |= SUSPEND_HOLD_COMPLETE; sys.state = STATE_SAFETY_DOOR; } else { sys.suspend = SUSPEND_DISABLE; sys.state = STATE_IDLE; } } system_clear_exec_state_flag(EXEC_CYCLE_STOP); } } // Execute overrides. rt_exec = sys_rt_exec_motion_override; // Copy volatile sys_rt_exec_motion_override if (rt_exec) { system_clear_exec_motion_overrides(); // Clear all motion override flags. uint8_t new_f_override = sys.f_override; if (rt_exec & EXEC_FEED_OVR_RESET) { new_f_override = DEFAULT_FEED_OVERRIDE; } if (rt_exec & EXEC_FEED_OVR_COARSE_PLUS) { new_f_override += FEED_OVERRIDE_COARSE_INCREMENT; } if (rt_exec & EXEC_FEED_OVR_COARSE_MINUS) { new_f_override -= FEED_OVERRIDE_COARSE_INCREMENT; } if (rt_exec & EXEC_FEED_OVR_FINE_PLUS) { new_f_override += FEED_OVERRIDE_FINE_INCREMENT; } if (rt_exec & EXEC_FEED_OVR_FINE_MINUS) { new_f_override -= FEED_OVERRIDE_FINE_INCREMENT; } new_f_override = min(new_f_override,MAX_FEED_RATE_OVERRIDE); new_f_override = max(new_f_override,MIN_FEED_RATE_OVERRIDE); uint8_t new_r_override = sys.r_override; if (rt_exec & EXEC_RAPID_OVR_RESET) { new_r_override = DEFAULT_RAPID_OVERRIDE; } if (rt_exec & EXEC_RAPID_OVR_MEDIUM) { new_r_override = RAPID_OVERRIDE_MEDIUM; } if (rt_exec & EXEC_RAPID_OVR_LOW) { new_r_override = RAPID_OVERRIDE_LOW; } if ((new_f_override != sys.f_override) || (new_r_override != sys.r_override)) { sys.f_override = new_f_override; sys.r_override = new_r_override; sys.report_ovr_counter = 0; // Set to report change immediately plan_update_velocity_profile_parameters(); plan_cycle_reinitialize(); } } rt_exec = sys_rt_exec_accessory_override; if (rt_exec) { system_clear_exec_accessory_overrides(); // Clear all accessory override flags. // NOTE: Unlike motion overrides, spindle overrides do not require a planner reinitialization. uint8_t last_s_override = sys.spindle_speed_ovr; if (rt_exec & EXEC_SPINDLE_OVR_RESET) { last_s_override = DEFAULT_SPINDLE_SPEED_OVERRIDE; } if (rt_exec & EXEC_SPINDLE_OVR_COARSE_PLUS) { last_s_override += SPINDLE_OVERRIDE_COARSE_INCREMENT; } if (rt_exec & EXEC_SPINDLE_OVR_COARSE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_COARSE_INCREMENT; } if (rt_exec & EXEC_SPINDLE_OVR_FINE_PLUS) { last_s_override += SPINDLE_OVERRIDE_FINE_INCREMENT; } if (rt_exec & EXEC_SPINDLE_OVR_FINE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_FINE_INCREMENT; } last_s_override = min(last_s_override,MAX_SPINDLE_SPEED_OVERRIDE); last_s_override = max(last_s_override,MIN_SPINDLE_SPEED_OVERRIDE); if (last_s_override != sys.spindle_speed_ovr) { bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); sys.spindle_speed_ovr = last_s_override; sys.report_ovr_counter = 0; // Set to report change immediately } if (rt_exec & EXEC_SPINDLE_OVR_STOP) { // Spindle stop override allowed only while in HOLD state. // NOTE: Report counters are set in spindle_set_state() when spindle stop is executed. if (sys.state == STATE_HOLD) { if (!(sys.spindle_stop_ovr)) { sys.spindle_stop_ovr = SPINDLE_STOP_OVR_INITIATE; } else if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_ENABLED) { sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE; } } } // NOTE: Since coolant state always performs a planner sync whenever it changes, the current // run state can be determined by checking the parser state. if (rt_exec & (EXEC_COOLANT_FLOOD_OVR_TOGGLE | EXEC_COOLANT_MIST_OVR_TOGGLE)) { if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOLD))) { uint8_t coolant_state = gc_state.modal.coolant; #ifdef ENABLE_M7 if (rt_exec & EXEC_COOLANT_MIST_OVR_TOGGLE) { if (coolant_state & COOLANT_MIST_ENABLE) { bit_false(coolant_state,COOLANT_MIST_ENABLE); } else { coolant_state |= COOLANT_MIST_ENABLE; } } if (rt_exec & EXEC_COOLANT_FLOOD_OVR_TOGGLE) { if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); } else { coolant_state |= COOLANT_FLOOD_ENABLE; } } #else if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); } else { coolant_state |= COOLANT_FLOOD_ENABLE; } #endif coolant_set_state(coolant_state); // Report counter set in coolant_set_state(). gc_state.modal.coolant = coolant_state; } } } #ifdef DEBUG if (sys_rt_exec_debug) { report_realtime_debug(); sys_rt_exec_debug = 0; } #endif // Reload step segment buffer if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_SAFETY_DOOR | STATE_HOMING | STATE_SLEEP| STATE_JOG)) { st_prep_buffer(); } } // Handles Grbl system suspend procedures, such as feed hold, safety door, and parking motion. // The system will enter this loop, create local variables for suspend tasks, and return to // whatever function that invoked the suspend, such that Grbl resumes normal operation. // This function is written in a way to promote custom parking motions. Simply use this as a // template static void protocol_exec_rt_suspend() { #ifdef PARKING_ENABLE // Declare and initialize parking local variables float restore_target[N_AXIS]; float parking_target[N_AXIS]; float retract_waypoint = PARKING_PULLOUT_INCREMENT; plan_line_data_t plan_data; plan_line_data_t *pl_data = &plan_data; memset(pl_data,0,sizeof(plan_line_data_t)); pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); #ifdef USE_LINE_NUMBERS pl_data->line_number = PARKING_MOTION_LINE_NUMBER; #endif #endif plan_block_t *block = plan_get_current_block(); uint8_t restore_condition; #ifdef VARIABLE_SPINDLE float restore_spindle_speed; if (block == NULL) { restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); restore_spindle_speed = gc_state.spindle_speed; } else { restore_condition = block->condition; restore_spindle_speed = block->spindle_speed; } #else if (block == NULL) { restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); } else { restore_condition = block->condition; } #endif while (sys.suspend) { if (sys.abort) { return; } // Block until initial hold is complete and the machine has stopped motion. if (sys.suspend & SUSPEND_HOLD_COMPLETE) { // Parking manager. Handles de/re-energizing, switch state checks, and parking motions for // the safety door and sleep states. if (sys.state & (STATE_SAFETY_DOOR | STATE_SLEEP)) { // Handles retraction motions and de-energizing. if (bit_isfalse(sys.suspend,SUSPEND_RETRACT_COMPLETE)) { // Ensure any prior spindle stop override is disabled at start of safety door routine. sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; #ifndef PARKING_ENABLE spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize coolant_set_state(COOLANT_DISABLE); // De-energize #else // Get current position and store restore location and spindle retract waypoint. system_convert_array_steps_to_mpos(parking_target,sys_position); if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { memcpy(restore_target,parking_target,sizeof(parking_target)); retract_waypoint += restore_target[PARKING_AXIS]; retract_waypoint = min(retract_waypoint,PARKING_TARGET); } // Execute slow pull-out parking retract motion. Parking requires homing enabled, the // current location not exceeding the parking target location, and laser mode disabled. // NOTE: State is will remain DOOR, until the de-energizing and retract is complete. if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) && (parking_target[PARKING_AXIS] < PARKING_TARGET) && bit_isfalse(settings.flags,BITFLAG_LASER_MODE)) { // Retract spindle by pullout distance. Ensure retraction motion moves away from // the workpiece and waypoint motion doesn't exceed the parking target location. if (parking_target[PARKING_AXIS] < retract_waypoint) { parking_target[PARKING_AXIS] = retract_waypoint; pl_data->feed_rate = PARKING_PULLOUT_RATE; pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Retain accessory state pl_data->spindle_speed = restore_spindle_speed; mc_parking_motion(parking_target, pl_data); } // NOTE: Clear accessory state after retract and after an aborted restore motion. pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); pl_data->spindle_speed = 0.0; spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize coolant_set_state(COOLANT_DISABLE); // De-energize // Execute fast parking retract motion to parking target location. if (parking_target[PARKING_AXIS] < PARKING_TARGET) { parking_target[PARKING_AXIS] = PARKING_TARGET; pl_data->feed_rate = PARKING_RATE; mc_parking_motion(parking_target, pl_data); } } else { // Parking motion not possible. Just disable the spindle and coolant. // NOTE: Laser mode does not start a parking motion to ensure the laser stops immediately. spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize coolant_set_state(COOLANT_DISABLE); // De-energize } #endif sys.suspend &= ~(SUSPEND_RESTART_RETRACT); sys.suspend |= SUSPEND_RETRACT_COMPLETE; } else { if (sys.state == STATE_SLEEP) { report_feedback_message(MESSAGE_SLEEP_MODE); // Spindle and coolant should already be stopped, but do it again just to be sure. spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize coolant_set_state(COOLANT_DISABLE); // De-energize st_go_idle(); // Disable steppers while (!(sys.abort)) { protocol_exec_rt_system(); } // Do nothing until reset. return; // Abort received. Return to re-initialize. } // Allows resuming from parking/safety door. Actively checks if safety door is closed and ready to resume. if (sys.state == STATE_SAFETY_DOOR) { if (!(system_check_safety_door_ajar())) { sys.suspend &= ~(SUSPEND_SAFETY_DOOR_AJAR); // Reset door ajar flag to denote ready to resume. } } // Handles parking restore and safety door resume. if (sys.suspend & SUSPEND_INITIATE_RESTORE) { #ifdef PARKING_ENABLE // Execute fast restore motion to the pull-out position. Parking requires homing enabled. // NOTE: State is will remain DOOR, until the de-energizing and retract is complete. if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) { // Check to ensure the motion doesn't move below pull-out position. if (parking_target[PARKING_AXIS] <= PARKING_TARGET) { parking_target[PARKING_AXIS] = retract_waypoint; pl_data->feed_rate = PARKING_RATE; mc_parking_motion(parking_target, pl_data); } } #endif // Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle. if (gc_state.modal.spindle != SPINDLE_DISABLE) { // Block if safety door re-opened during prior restore actions. if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts. bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); } else { spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SYS_SUSPEND); } } } if (gc_state.modal.coolant != COOLANT_DISABLE) { // Block if safety door re-opened during prior restore actions. if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { // NOTE: Laser mode will honor this delay. An exhaust system is often controlled by this pin. coolant_set_state((restore_condition & (PL_COND_FLAG_COOLANT_FLOOD | PL_COND_FLAG_COOLANT_FLOOD))); delay_sec(SAFETY_DOOR_COOLANT_DELAY, DELAY_MODE_SYS_SUSPEND); } } #ifdef PARKING_ENABLE // Execute slow plunge motion from pull-out position to resume position. if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) { // Block if safety door re-opened during prior restore actions. if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { // Regardless if the retract parking motion was a valid/safe motion or not, the // restore parking motion should logically be valid, either by returning to the // original position through valid machine space or by not moving at all. pl_data->feed_rate = PARKING_PULLOUT_RATE; pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Restore accessory state pl_data->spindle_speed = restore_spindle_speed; mc_parking_motion(restore_target, pl_data); } } #endif if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { sys.suspend |= SUSPEND_RESTORE_COMPLETE; system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program. } } } } else { // Feed hold manager. Controls spindle stop override states. // NOTE: Hold ensured as completed by condition check at the beginning of suspend routine. if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_INITIATE) { // Handles beginning of spindle stop if (gc_state.modal.spindle != SPINDLE_DISABLE) { spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize sys.spindle_stop_ovr = SPINDLE_STOP_OVR_ENABLED; // Set stop override state to enabled, if de-energized. } else { sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state } } else if (sys.spindle_stop_ovr & (SPINDLE_STOP_OVR_RESTORE | SPINDLE_STOP_OVR_RESTORE_CYCLE)) { // Handles restoring of spindle state if (gc_state.modal.spindle != SPINDLE_DISABLE) { report_feedback_message(MESSAGE_SPINDLE_RESTORE); if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts. bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); } else { spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SYS_SUSPEND); } } if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_RESTORE_CYCLE) { system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program. } sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state } } } protocol_exec_rt_system(); } }