/*
main.c - An embedded CNC Controller with rs274/ngc (g-code) support
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2013 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
/* A big thanks to Alden Hart of Synthetos, supplier of grblshield and TinyG, who has
been integral throughout the development of the higher level details of Grbl, as well
as being a consistent sounding board for the future of accessible and free CNC. */
#include
#include
#include "config.h"
#include "planner.h"
#include "nuts_bolts.h"
#include "stepper.h"
#include "spindle_control.h"
#include "coolant_control.h"
#include "motion_control.h"
#include "gcode.h"
#include "protocol.h"
#include "limits.h"
#include "report.h"
#include "settings.h"
#include "serial.h"
// Declare system global variable structure
system_t sys;
int main(void)
{
// Initialize system
serial_init(); // Setup serial baud rate and interrupts
settings_init(); // Load grbl settings from EEPROM
st_init(); // Setup stepper pins and interrupt timers
sei(); // Enable interrupts
memset(&sys, 0, sizeof(sys)); // Clear all system variables
sys.abort = true; // Set abort to complete initialization
sys.state = STATE_INIT; // Set alarm state to indicate unknown initial position
for(;;) {
// Execute system reset upon a system abort, where the main program will return to this loop.
// Once here, it is safe to re-initialize the system. At startup, the system will automatically
// reset to finish the initialization process.
if (sys.abort) {
// Reset system.
serial_reset_read_buffer(); // Clear serial read buffer
plan_init(); // Clear block buffer and planner variables
gc_init(); // Set g-code parser to default state
protocol_init(); // Clear incoming line data and execute startup lines
spindle_init();
coolant_init();
limits_init();
st_reset(); // Clear stepper subsystem variables.
// Sync cleared gcode and planner positions to current system position, which is only
// cleared upon startup, not a reset/abort.
plan_sync_position();
gc_sync_position();
// Reset system variables.
sys.abort = false;
sys.execute = 0;
if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) { sys.auto_start = true; }
// Check for power-up and set system alarm if homing is enabled to force homing cycle
// by setting Grbl's alarm state. Alarm locks out all g-code commands, including the
// startup scripts, but allows access to settings and internal commands. Only a homing
// cycle '$H' or kill alarm locks '$X' will disable the alarm.
// NOTE: The startup script will run after successful completion of the homing cycle, but
// not after disabling the alarm locks. Prevents motion startup blocks from crashing into
// things uncontrollably. Very bad.
#ifdef HOMING_INIT_LOCK
if (sys.state == STATE_INIT && bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { sys.state = STATE_ALARM; }
#endif
// Check for and report alarm state after a reset, error, or an initial power up.
if (sys.state == STATE_ALARM) {
report_feedback_message(MESSAGE_ALARM_LOCK);
} else {
// All systems go. Set system to ready and execute startup script.
sys.state = STATE_IDLE;
protocol_execute_startup();
}
}
protocol_execute_runtime();
// When the serial protocol returns, there are no more characters in the serial read buffer to
// be processed and executed. This indicates that individual commands are being issued or
// streaming is finished. In either case, auto-cycle start, if enabled, any queued moves.
mc_auto_cycle_start();
protocol_process(); // ... process the serial protocol
}
return 0; /* never reached */
}