/*
gcode.c - rs274/ngc parser.
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
#include "grbl.h"
// NOTE: Max line number is defined by the g-code standard to be 99999. It seems to be an
// arbitrary value, and some GUIs may require more. So we increased it based on a max safe
// value when converting a float (7.2 digit precision)s to an integer.
#define MAX_LINE_NUMBER 10000000
#define AXIS_COMMAND_NONE 0
#define AXIS_COMMAND_NON_MODAL 1
#define AXIS_COMMAND_MOTION_MODE 2
#define AXIS_COMMAND_TOOL_LENGTH_OFFSET 3 // *Undefined but required
// Declare gc extern struct
parser_state_t gc_state;
parser_block_t gc_block;
#define FAIL(status) return(status);
void gc_init()
{
memset(&gc_state, 0, sizeof(parser_state_t));
// Load default G54 coordinate system.
if (!(settings_read_coord_data(gc_state.modal.coord_select,gc_state.coord_system))) {
report_status_message(STATUS_SETTING_READ_FAIL);
}
}
// Sets g-code parser position in mm. Input in steps. Called by the system abort and hard
// limit pull-off routines.
void gc_sync_position()
{
system_convert_array_steps_to_mpos(gc_state.position,sys_position);
}
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floating point values (no whitespace). Comments and block delete
// characters have been removed. In this function, all units and positions are converted and
// exported to grbl's internal functions in terms of (mm, mm/min) and absolute machine
// coordinates, respectively.
uint8_t gc_execute_line(char *line)
{
/* -------------------------------------------------------------------------------------
STEP 1: Initialize parser block struct and copy current g-code state modes. The parser
updates these modes and commands as the block line is parser and will only be used and
executed after successful error-checking. The parser block struct also contains a block
values struct, word tracking variables, and a non-modal commands tracker for the new
block. This struct contains all of the necessary information to execute the block. */
memset(&gc_block, 0, sizeof(parser_block_t)); // Initialize the parser block struct.
memcpy(&gc_block.modal,&gc_state.modal,sizeof(gc_modal_t)); // Copy current modes
uint8_t axis_command = AXIS_COMMAND_NONE;
uint8_t axis_0, axis_1, axis_linear;
uint8_t coord_select = 0; // Tracks G10 P coordinate selection for execution
// Initialize bitflag tracking variables for axis indices compatible operations.
uint8_t axis_words = 0; // XYZ tracking
uint8_t ijk_words = 0; // IJK tracking
// Initialize command and value words and parser flags variables.
uint16_t command_words = 0; // Tracks G and M command words. Also used for modal group violations.
uint16_t value_words = 0; // Tracks value words.
uint8_t gc_parser_flags = GC_PARSER_NONE;
// Determine if the line is a jogging motion or a normal g-code block.
if (line[0] == '$') { // NOTE: `$J=` already parsed when passed to this function.
// Set G1 and G94 enforced modes to ensure accurate error checks.
gc_parser_flags |= GC_PARSER_JOG_MOTION;
gc_block.modal.motion = MOTION_MODE_LINEAR;
gc_block.modal.feed_rate = FEED_RATE_MODE_UNITS_PER_MIN;
#ifdef USE_LINE_NUMBERS
gc_block.values.n = JOG_LINE_NUMBER; // Initialize default line number reported during jog.
#endif
}
/* -------------------------------------------------------------------------------------
STEP 2: Import all g-code words in the block line. A g-code word is a letter followed by
a number, which can either be a 'G'/'M' command or sets/assigns a command value. Also,
perform initial error-checks for command word modal group violations, for any repeated
words, and for negative values set for the value words F, N, P, T, and S. */
uint8_t word_bit; // Bit-value for assigning tracking variables
uint8_t char_counter;
char letter;
float value;
uint8_t int_value = 0;
uint16_t mantissa = 0;
if (gc_parser_flags & GC_PARSER_JOG_MOTION) { char_counter = 3; } // Start parsing after `$J=`
else { char_counter = 0; }
while (line[char_counter] != 0) { // Loop until no more g-code words in line.
// Import the next g-code word, expecting a letter followed by a value. Otherwise, error out.
letter = line[char_counter];
if((letter < 'A') || (letter > 'Z')) { FAIL(STATUS_EXPECTED_COMMAND_LETTER); } // [Expected word letter]
char_counter++;
if (!read_float(line, &char_counter, &value)) { FAIL(STATUS_BAD_NUMBER_FORMAT); } // [Expected word value]
// Convert values to smaller uint8 significand and mantissa values for parsing this word.
// NOTE: Mantissa is multiplied by 100 to catch non-integer command values. This is more
// accurate than the NIST gcode requirement of x10 when used for commands, but not quite
// accurate enough for value words that require integers to within 0.0001. This should be
// a good enough comprimise and catch most all non-integer errors. To make it compliant,
// we would simply need to change the mantissa to int16, but this add compiled flash space.
// Maybe update this later.
int_value = trunc(value);
mantissa = round(100*(value - int_value)); // Compute mantissa for Gxx.x commands.
// NOTE: Rounding must be used to catch small floating point errors.
// Check if the g-code word is supported or errors due to modal group violations or has
// been repeated in the g-code block. If ok, update the command or record its value.
switch(letter) {
/* 'G' and 'M' Command Words: Parse commands and check for modal group violations.
NOTE: Modal group numbers are defined in Table 4 of NIST RS274-NGC v3, pg.20 */
case 'G':
// Determine 'G' command and its modal group
switch(int_value) {
case 10: case 28: case 30: case 92:
// Check for G10/28/30/92 being called with G0/1/2/3/38 on same block.
// * G43.1 is also an axis command but is not explicitly defined this way.
if (mantissa == 0) { // Ignore G28.1, G30.1, and G92.1
if (axis_command) { FAIL(STATUS_GCODE_AXIS_COMMAND_CONFLICT); } // [Axis word/command conflict]
axis_command = AXIS_COMMAND_NON_MODAL;
}
// No break. Continues to next line.
case 4: case 53:
word_bit = MODAL_GROUP_G0;
gc_block.non_modal_command = int_value;
if ((int_value == 28) || (int_value == 30) || (int_value == 92)) {
if (!((mantissa == 0) || (mantissa == 10))) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); }
gc_block.non_modal_command += mantissa;
mantissa = 0; // Set to zero to indicate valid non-integer G command.
}
break;
case 0: case 1: case 2: case 3: case 38:
// Check for G0/1/2/3/38 being called with G10/28/30/92 on same block.
// * G43.1 is also an axis command but is not explicitly defined this way.
if (axis_command) { FAIL(STATUS_GCODE_AXIS_COMMAND_CONFLICT); } // [Axis word/command conflict]
axis_command = AXIS_COMMAND_MOTION_MODE;
// No break. Continues to next line.
case 80:
word_bit = MODAL_GROUP_G1;
gc_block.modal.motion = int_value;
if (int_value == 38){
if (!((mantissa == 20) || (mantissa == 30) || (mantissa == 40) || (mantissa == 50))) {
FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); // [Unsupported G38.x command]
}
gc_block.modal.motion += (mantissa/10)+100;
mantissa = 0; // Set to zero to indicate valid non-integer G command.
}
break;
case 17: case 18: case 19:
word_bit = MODAL_GROUP_G2;
gc_block.modal.plane_select = int_value - 17;
break;
case 90: case 91:
if (mantissa == 0) {
word_bit = MODAL_GROUP_G3;
gc_block.modal.distance = int_value - 90;
} else {
word_bit = MODAL_GROUP_G4;
if ((mantissa != 10) || (int_value == 90)) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G90.1 not supported]
mantissa = 0; // Set to zero to indicate valid non-integer G command.
// Otherwise, arc IJK incremental mode is default. G91.1 does nothing.
}
break;
case 93: case 94:
word_bit = MODAL_GROUP_G5;
gc_block.modal.feed_rate = 94 - int_value;
break;
case 20: case 21:
word_bit = MODAL_GROUP_G6;
gc_block.modal.units = 21 - int_value;
break;
case 40:
word_bit = MODAL_GROUP_G7;
// NOTE: Not required since cutter radius compensation is always disabled. Only here
// to support G40 commands that often appear in g-code program headers to setup defaults.
// gc_block.modal.cutter_comp = CUTTER_COMP_DISABLE; // G40
break;
case 43: case 49:
word_bit = MODAL_GROUP_G8;
// NOTE: The NIST g-code standard vaguely states that when a tool length offset is changed,
// there cannot be any axis motion or coordinate offsets updated. Meaning G43, G43.1, and G49
// all are explicit axis commands, regardless if they require axis words or not.
if (axis_command) { FAIL(STATUS_GCODE_AXIS_COMMAND_CONFLICT); } // [Axis word/command conflict] }
axis_command = AXIS_COMMAND_TOOL_LENGTH_OFFSET;
if (int_value == 49) { // G49
gc_block.modal.tool_length = TOOL_LENGTH_OFFSET_CANCEL;
} else if (mantissa == 10) { // G43.1
gc_block.modal.tool_length = TOOL_LENGTH_OFFSET_ENABLE_DYNAMIC;
} else { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [Unsupported G43.x command]
mantissa = 0; // Set to zero to indicate valid non-integer G command.
break;
case 54: case 55: case 56: case 57: case 58: case 59:
// NOTE: G59.x are not supported. (But their int_values would be 60, 61, and 62.)
word_bit = MODAL_GROUP_G12;
gc_block.modal.coord_select = int_value - 54; // Shift to array indexing.
break;
case 61:
word_bit = MODAL_GROUP_G13;
if (mantissa != 0) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G61.1 not supported]
// gc_block.modal.control = CONTROL_MODE_EXACT_PATH; // G61
break;
default: FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); // [Unsupported G command]
}
if (mantissa > 0) { FAIL(STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER); } // [Unsupported or invalid Gxx.x command]
// Check for more than one command per modal group violations in the current block
// NOTE: Variable 'word_bit' is always assigned, if the command is valid.
if ( bit_istrue(command_words,bit(word_bit)) ) { FAIL(STATUS_GCODE_MODAL_GROUP_VIOLATION); }
command_words |= bit(word_bit);
break;
case 'M':
// Determine 'M' command and its modal group
if (mantissa > 0) { FAIL(STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER); } // [No Mxx.x commands]
switch(int_value) {
case 0: case 1: case 2: case 30:
word_bit = MODAL_GROUP_M4;
switch(int_value) {
case 0: gc_block.modal.program_flow = PROGRAM_FLOW_PAUSED; break; // Program pause
case 1: break; // Optional stop not supported. Ignore.
default: gc_block.modal.program_flow = int_value; // Program end and reset
}
break;
#ifndef USE_SPINDLE_DIR_AS_ENABLE_PIN
case 4:
#endif
case 3: case 5:
word_bit = MODAL_GROUP_M7;
switch(int_value) {
case 3: gc_block.modal.spindle = SPINDLE_ENABLE_CW; break;
#ifndef USE_SPINDLE_DIR_AS_ENABLE_PIN
case 4: gc_block.modal.spindle = SPINDLE_ENABLE_CCW; break;
#endif
case 5: gc_block.modal.spindle = SPINDLE_DISABLE; break;
}
break;
#ifdef ENABLE_M7
case 7: case 8: case 9:
#else
case 8: case 9:
#endif
word_bit = MODAL_GROUP_M8;
switch(int_value) {
#ifdef ENABLE_M7
case 7: gc_block.modal.coolant = COOLANT_MIST_ENABLE; break;
#endif
case 8: gc_block.modal.coolant = COOLANT_FLOOD_ENABLE; break;
case 9: gc_block.modal.coolant = COOLANT_DISABLE; break;
}
break;
default: FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); // [Unsupported M command]
}
// Check for more than one command per modal group violations in the current block
// NOTE: Variable 'word_bit' is always assigned, if the command is valid.
if ( bit_istrue(command_words,bit(word_bit)) ) { FAIL(STATUS_GCODE_MODAL_GROUP_VIOLATION); }
command_words |= bit(word_bit);
break;
// NOTE: All remaining letters assign values.
default:
/* Non-Command Words: This initial parsing phase only checks for repeats of the remaining
legal g-code words and stores their value. Error-checking is performed later since some
words (I,J,K,L,P,R) have multiple connotations and/or depend on the issued commands. */
switch(letter){
// case 'A': // Not supported
// case 'B': // Not supported
// case 'C': // Not supported
// case 'D': // Not supported
case 'F': word_bit = WORD_F; gc_block.values.f = value; break;
// case 'H': // Not supported
case 'I': word_bit = WORD_I; gc_block.values.ijk[X_AXIS] = value; ijk_words |= (1< MAX_LINE_NUMBER) { FAIL(STATUS_GCODE_INVALID_LINE_NUMBER); } // [Exceeds max line number]
}
// bit_false(value_words,bit(WORD_N)); // NOTE: Single-meaning value word. Set at end of error-checking.
// Track for unused words at the end of error-checking.
// NOTE: Single-meaning value words are removed all at once at the end of error-checking, because
// they are always used when present. This was done to save a few bytes of flash. For clarity, the
// single-meaning value words may be removed as they are used. Also, axis words are treated in the
// same way. If there is an explicit/implicit axis command, XYZ words are always used and are
// are removed at the end of error-checking.
// [1. Comments ]: MSG's NOT SUPPORTED. Comment handling performed by protocol.
// [2. Set feed rate mode ]: G93 F word missing with G1,G2/3 active, implicitly or explicitly. Feed rate
// is not defined after switching to G94 from G93.
// NOTE: For jogging, ignore prior feed rate mode. Enforce G94 and check for required F word.
if (gc_parser_flags & GC_PARSER_JOG_MOTION) {
if (bit_isfalse(value_words,bit(WORD_F))) { FAIL(STATUS_GCODE_UNDEFINED_FEED_RATE); }
if (gc_block.modal.units == UNITS_MODE_INCHES) { gc_block.values.f *= MM_PER_INCH; }
} else {
if (gc_block.modal.feed_rate == FEED_RATE_MODE_INVERSE_TIME) { // = G93
// NOTE: G38 can also operate in inverse time, but is undefined as an error. Missing F word check added here.
if (axis_command == AXIS_COMMAND_MOTION_MODE) {
if ((gc_block.modal.motion != MOTION_MODE_NONE) || (gc_block.modal.motion != MOTION_MODE_SEEK)) {
if (bit_isfalse(value_words,bit(WORD_F))) { FAIL(STATUS_GCODE_UNDEFINED_FEED_RATE); } // [F word missing]
}
}
// NOTE: It seems redundant to check for an F word to be passed after switching from G94 to G93. We would
// accomplish the exact same thing if the feed rate value is always reset to zero and undefined after each
// inverse time block, since the commands that use this value already perform undefined checks. This would
// also allow other commands, following this switch, to execute and not error out needlessly. This code is
// combined with the above feed rate mode and the below set feed rate error-checking.
// [3. Set feed rate ]: F is negative (done.)
// - In inverse time mode: Always implicitly zero the feed rate value before and after block completion.
// NOTE: If in G93 mode or switched into it from G94, just keep F value as initialized zero or passed F word
// value in the block. If no F word is passed with a motion command that requires a feed rate, this will error
// out in the motion modes error-checking. However, if no F word is passed with NO motion command that requires
// a feed rate, we simply move on and the state feed rate value gets updated to zero and remains undefined.
} else { // = G94
// - In units per mm mode: If F word passed, ensure value is in mm/min, otherwise push last state value.
if (gc_state.modal.feed_rate == FEED_RATE_MODE_UNITS_PER_MIN) { // Last state is also G94
if (bit_istrue(value_words,bit(WORD_F))) {
if (gc_block.modal.units == UNITS_MODE_INCHES) { gc_block.values.f *= MM_PER_INCH; }
} else {
gc_block.values.f = gc_state.feed_rate; // Push last state feed rate
}
} // Else, switching to G94 from G93, so don't push last state feed rate. Its undefined or the passed F word value.
}
}
// bit_false(value_words,bit(WORD_F)); // NOTE: Single-meaning value word. Set at end of error-checking.
// [4. Set spindle speed ]: S is negative (done.)
if (bit_isfalse(value_words,bit(WORD_S))) { gc_block.values.s = gc_state.spindle_speed; }
// bit_false(value_words,bit(WORD_S)); // NOTE: Single-meaning value word. Set at end of error-checking.
// [5. Select tool ]: NOT SUPPORTED. Only tracks value. T is negative (done.) Not an integer. Greater than max tool value.
// bit_false(value_words,bit(WORD_T)); // NOTE: Single-meaning value word. Set at end of error-checking.
// [6. Change tool ]: N/A
// [7. Spindle control ]: N/A
// [8. Coolant control ]: N/A
// [9. Enable/disable feed rate or spindle overrides ]: NOT SUPPORTED.
// [10. Dwell ]: P value missing. P is negative (done.) NOTE: See below.
if (gc_block.non_modal_command == NON_MODAL_DWELL) {
if (bit_isfalse(value_words,bit(WORD_P))) { FAIL(STATUS_GCODE_VALUE_WORD_MISSING); } // [P word missing]
bit_false(value_words,bit(WORD_P));
}
// [11. Set active plane ]: N/A
switch (gc_block.modal.plane_select) {
case PLANE_SELECT_XY:
axis_0 = X_AXIS;
axis_1 = Y_AXIS;
axis_linear = Z_AXIS;
break;
case PLANE_SELECT_ZX:
axis_0 = Z_AXIS;
axis_1 = X_AXIS;
axis_linear = Y_AXIS;
break;
default: // case PLANE_SELECT_YZ:
axis_0 = Y_AXIS;
axis_1 = Z_AXIS;
axis_linear = X_AXIS;
}
// [12. Set length units ]: N/A
// Pre-convert XYZ coordinate values to millimeters, if applicable.
uint8_t idx;
if (gc_block.modal.units == UNITS_MODE_INCHES) {
for (idx=0; idx N_COORDINATE_SYSTEM) { FAIL(STATUS_GCODE_UNSUPPORTED_COORD_SYS); } // [Greater than N sys]
if (gc_state.modal.coord_select != gc_block.modal.coord_select) {
if (!(settings_read_coord_data(gc_block.modal.coord_select,block_coord_system))) { FAIL(STATUS_SETTING_READ_FAIL); }
}
}
// [16. Set path control mode ]: N/A. Only G61. G61.1 and G64 NOT SUPPORTED.
// [17. Set distance mode ]: N/A. Only G91.1. G90.1 NOT SUPPORTED.
// [18. Set retract mode ]: NOT SUPPORTED.
// [19. Remaining non-modal actions ]: Check go to predefined position, set G10, or set axis offsets.
// NOTE: We need to separate the non-modal commands that are axis word-using (G10/G28/G30/G92), as these
// commands all treat axis words differently. G10 as absolute offsets or computes current position as
// the axis value, G92 similarly to G10 L20, and G28/30 as an intermediate target position that observes
// all the current coordinate system and G92 offsets.
switch (gc_block.non_modal_command) {
case NON_MODAL_SET_COORDINATE_DATA:
// [G10 Errors]: L missing and is not 2 or 20. P word missing. (Negative P value done.)
// [G10 L2 Errors]: R word NOT SUPPORTED. P value not 0 to nCoordSys(max 9). Axis words missing.
// [G10 L20 Errors]: P must be 0 to nCoordSys(max 9). Axis words missing.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS) }; // [No axis words]
if (bit_isfalse(value_words,((1< N_COORDINATE_SYSTEM) { FAIL(STATUS_GCODE_UNSUPPORTED_COORD_SYS); } // [Greater than N sys]
if (gc_block.values.l != 20) {
if (gc_block.values.l == 2) {
if (bit_istrue(value_words,bit(WORD_R))) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G10 L2 R not supported]
} else { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [Unsupported L]
}
bit_false(value_words,(bit(WORD_L)|bit(WORD_P)));
// Determine coordinate system to change and try to load from EEPROM.
if (coord_select > 0) { coord_select--; } // Adjust P1-P6 index to EEPROM coordinate data indexing.
else { coord_select = gc_block.modal.coord_select; } // Index P0 as the active coordinate system
// NOTE: Store parameter data in IJK values. By rule, they are not in use with this command.
if (!settings_read_coord_data(coord_select,gc_block.values.ijk)) { FAIL(STATUS_SETTING_READ_FAIL); } // [EEPROM read fail]
// Pre-calculate the coordinate data changes.
for (idx=0; idx WCS = MPos - G92 - TLO - WPos
gc_block.values.ijk[idx] = gc_state.position[idx]-gc_state.coord_offset[idx]-gc_block.values.xyz[idx];
if (idx == TOOL_LENGTH_OFFSET_AXIS) { gc_block.values.ijk[idx] -= gc_state.tool_length_offset; }
} else {
// L2: Update coordinate system axis to programmed value.
gc_block.values.ijk[idx] = gc_block.values.xyz[idx];
}
} // Else, keep current stored value.
}
break;
case NON_MODAL_SET_COORDINATE_OFFSET:
// [G92 Errors]: No axis words.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS); } // [No axis words]
// Update axes defined only in block. Offsets current system to defined value. Does not update when
// active coordinate system is selected, but is still active unless G92.1 disables it.
for (idx=0; idx G92 = MPos - WCS - TLO - WPos
gc_block.values.xyz[idx] = gc_state.position[idx]-block_coord_system[idx]-gc_block.values.xyz[idx];
if (idx == TOOL_LENGTH_OFFSET_AXIS) { gc_block.values.xyz[idx] -= gc_state.tool_length_offset; }
} else {
gc_block.values.xyz[idx] = gc_state.coord_offset[idx];
}
}
break;
default:
// At this point, the rest of the explicit axis commands treat the axis values as the traditional
// target position with the coordinate system offsets, G92 offsets, absolute override, and distance
// modes applied. This includes the motion mode commands. We can now pre-compute the target position.
// NOTE: Tool offsets may be appended to these conversions when/if this feature is added.
if (axis_command != AXIS_COMMAND_TOOL_LENGTH_OFFSET ) { // TLO block any axis command.
if (axis_words) {
for (idx=0; idx C -----------------+--------------- T <- [x,y]
| <------ d/2 ---->|
C - Current position
T - Target position
O - center of circle that pass through both C and T
d - distance from C to T
r - designated radius
h - distance from center of CT to O
Expanding the equations:
d -> sqrt(x^2 + y^2)
h -> sqrt(4 * r^2 - x^2 - y^2)/2
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
Which can be written:
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
Which we for size and speed reasons optimize to:
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
i = (x - (y * h_x2_div_d))/2
j = (y + (x * h_x2_div_d))/2
*/
// First, use h_x2_div_d to compute 4*h^2 to check if it is negative or r is smaller
// than d. If so, the sqrt of a negative number is complex and error out.
float h_x2_div_d = 4.0 * gc_block.values.r*gc_block.values.r - x*x - y*y;
if (h_x2_div_d < 0) { FAIL(STATUS_GCODE_ARC_RADIUS_ERROR); } // [Arc radius error]
// Finish computing h_x2_div_d.
h_x2_div_d = -sqrt(h_x2_div_d)/hypot_f(x,y); // == -(h * 2 / d)
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
if (gc_block.modal.motion == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
the left hand circle will be generated - when it is negative the right hand circle is generated.
T <-- Target position
^
Clockwise circles with this center | Clockwise circles with this center will have
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
\ | /
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
C <-- Current position
*/
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
// even though it is advised against ever generating such circles in a single line of g-code. By
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
// travel and thus we get the unadvisably long arcs as prescribed.
if (gc_block.values.r < 0) {
h_x2_div_d = -h_x2_div_d;
gc_block.values.r = -gc_block.values.r; // Finished with r. Set to positive for mc_arc
}
// Complete the operation by calculating the actual center of the arc
gc_block.values.ijk[axis_0] = 0.5*(x-(y*h_x2_div_d));
gc_block.values.ijk[axis_1] = 0.5*(y+(x*h_x2_div_d));
} else { // Arc Center Format Offset Mode
if (!(ijk_words & (bit(axis_0)|bit(axis_1)))) { FAIL(STATUS_GCODE_NO_OFFSETS_IN_PLANE); } // [No offsets in plane]
bit_false(value_words,(bit(WORD_I)|bit(WORD_J)|bit(WORD_K)));
// Convert IJK values to proper units.
if (gc_block.modal.units == UNITS_MODE_INCHES) {
for (idx=0; idx 0.005) {
if (delta_r > 0.5) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Arc definition error] > 0.5mm
if (delta_r > (0.001*gc_block.values.r)) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Arc definition error] > 0.005mm AND 0.1% radius
}
}
break;
case MOTION_MODE_PROBE_TOWARD_NO_ERROR: case MOTION_MODE_PROBE_AWAY_NO_ERROR:
gc_parser_flags |= GC_PARSER_PROBE_IS_NO_ERROR; // No break intentional.
case MOTION_MODE_PROBE_TOWARD: case MOTION_MODE_PROBE_AWAY:
if ((gc_block.modal.motion == MOTION_MODE_PROBE_AWAY) ||
(gc_block.modal.motion == MOTION_MODE_PROBE_AWAY_NO_ERROR)) { gc_parser_flags |= GC_PARSER_PROBE_IS_AWAY; }
// [G38 Errors]: Target is same current. No axis words. Cutter compensation is enabled. Feed rate
// is undefined. Probe is triggered. NOTE: Probe check moved to probe cycle. Instead of returning
// an error, it issues an alarm to prevent further motion to the probe. It's also done there to
// allow the planner buffer to empty and move off the probe trigger before another probing cycle.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS); } // [No axis words]
if (isequal_position_vector(gc_state.position, gc_block.values.xyz)) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Invalid target]
break;
}
}
}
// [21. Program flow ]: No error checks required.
// [0. Non-specific error-checks]: Complete unused value words check, i.e. IJK used when in arc
// radius mode, or axis words that aren't used in the block.
if (gc_parser_flags & GC_PARSER_JOG_MOTION) {
// Jogging only uses the F feed rate and XYZ value words. N is valid, but S and T are invalid.
bit_false(value_words,(bit(WORD_N)|bit(WORD_F)));
} else {
bit_false(value_words,(bit(WORD_N)|bit(WORD_F)|bit(WORD_S)|bit(WORD_T))); // Remove single-meaning value words.
}
if (axis_command) { bit_false(value_words,(bit(WORD_X)|bit(WORD_Y)|bit(WORD_Z))); } // Remove axis words.
if (value_words) { FAIL(STATUS_GCODE_UNUSED_WORDS); } // [Unused words]
/* -------------------------------------------------------------------------------------
STEP 4: EXECUTE!!
Assumes that all error-checking has been completed and no failure modes exist. We just
need to update the state and execute the block according to the order-of-execution.
*/
// Initialize planner data struct for motion blocks.
plan_line_data_t plan_data;
plan_line_data_t *pl_data = &plan_data;
memset(pl_data,0,sizeof(plan_line_data_t)); // Zero pl_data struct
// Intercept jog commands and complete error checking for valid jog commands and execute.
// NOTE: G-code parser state is not updated, except the position to ensure sequential jog
// targets are computed correctly. The final parser position after a jog is updated in
// protocol_execute_realtime() when jogging completes or is canceled.
if (gc_parser_flags & GC_PARSER_JOG_MOTION) {
// Only distance and unit modal commands and G53 absolute override command are allowed.
// NOTE: Feed rate word and axis word checks have already been performed in STEP 3.
if (command_words & ~(bit(MODAL_GROUP_G3) | bit(MODAL_GROUP_G6 | bit(MODAL_GROUP_G0))) ) { FAIL(STATUS_INVALID_JOG_COMMAND) };
if (!(gc_block.non_modal_command == NON_MODAL_ABSOLUTE_OVERRIDE || gc_block.non_modal_command == NON_MODAL_NO_ACTION)) { FAIL(STATUS_INVALID_JOG_COMMAND); }
// Initialize planner data to current spindle and coolant modal state.
pl_data->spindle_speed = gc_state.spindle_speed;
plan_data.condition = (gc_state.modal.spindle | gc_state.modal.coolant);
uint8_t status = jog_execute(&plan_data, &gc_block);
if (status == STATUS_OK) { memcpy(gc_state.position, gc_block.values.xyz, sizeof(gc_block.values.xyz)); }
return(status);
}
// If in laser mode, setup laser power based on current and past parser conditions.
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
if ( !((gc_block.modal.motion == MOTION_MODE_LINEAR) || (gc_block.modal.motion == MOTION_MODE_CW_ARC)
|| (gc_block.modal.motion == MOTION_MODE_CCW_ARC)) ) {
gc_parser_flags |= GC_PARSER_LASER_DISABLE;
}
// Any motion mode with axis words is allowed to be passed from a spindle speed update.
// NOTE: G1 and G0 without axis words sets axis_command to none. G28/30 are intentionally omitted.
// TODO: Check sync conditions for M3 enabled motions that don't enter the planner. (zero length).
if (axis_words && (axis_command == AXIS_COMMAND_MOTION_MODE)) {
gc_parser_flags |= GC_PARSER_LASER_ISMOTION;
} else {
// M3 constant power laser requires planner syncs to update the laser when changing between
// a G1/2/3 motion mode state and vice versa when there is no motion in the line.
if (gc_state.modal.spindle == SPINDLE_ENABLE_CW) {
if ((gc_state.modal.motion == MOTION_MODE_LINEAR) || (gc_state.modal.motion == MOTION_MODE_CW_ARC)
|| (gc_state.modal.motion == MOTION_MODE_CCW_ARC)) {
if (bit_istrue(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
gc_parser_flags |= GC_PARSER_LASER_FORCE_SYNC; // Change from G1/2/3 motion mode.
}
} else {
// When changing to a G1 motion mode without axis words from a non-G1/2/3 motion mode.
if (bit_isfalse(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
gc_parser_flags |= GC_PARSER_LASER_FORCE_SYNC;
}
}
}
}
}
// [0. Non-specific/common error-checks and miscellaneous setup]:
// NOTE: If no line number is present, the value is zero.
gc_state.line_number = gc_block.values.n;
#ifdef USE_LINE_NUMBERS
pl_data->line_number = gc_state.line_number; // Record data for planner use.
#endif
// [1. Comments feedback ]: NOT SUPPORTED
// [2. Set feed rate mode ]:
gc_state.modal.feed_rate = gc_block.modal.feed_rate;
if (gc_state.modal.feed_rate) { pl_data->condition |= PL_COND_FLAG_INVERSE_TIME; } // Set condition flag for planner use.
// [3. Set feed rate ]:
gc_state.feed_rate = gc_block.values.f; // Always copy this value. See feed rate error-checking.
pl_data->feed_rate = gc_state.feed_rate; // Record data for planner use.
// [4. Set spindle speed ]:
if ((gc_state.spindle_speed != gc_block.values.s) || bit_istrue(gc_parser_flags,GC_PARSER_LASER_FORCE_SYNC)) {
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
#ifdef VARIABLE_SPINDLE
if (bit_isfalse(gc_parser_flags,GC_PARSER_LASER_ISMOTION)) {
if (bit_istrue(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
spindle_sync(gc_state.modal.spindle, 0.0);
} else { spindle_sync(gc_state.modal.spindle, gc_block.values.s); }
}
#else
spindle_sync(gc_state.modal.spindle, 0.0);
#endif
}
gc_state.spindle_speed = gc_block.values.s; // Update spindle speed state.
}
// NOTE: Pass zero spindle speed for all restricted laser motions.
if (bit_isfalse(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
pl_data->spindle_speed = gc_state.spindle_speed; // Record data for planner use.
} // else { pl_data->spindle_speed = 0.0; } // Initialized as zero already.
// [5. Select tool ]: NOT SUPPORTED. Only tracks tool value.
gc_state.tool = gc_block.values.t;
// [6. Change tool ]: NOT SUPPORTED
// [7. Spindle control ]:
if (gc_state.modal.spindle != gc_block.modal.spindle) {
// Update spindle control and apply spindle speed when enabling it in this block.
// NOTE: All spindle state changes are synced, even in laser mode. Also, pl_data,
// rather than gc_state, is used to manage laser state for non-laser motions.
spindle_sync(gc_block.modal.spindle, pl_data->spindle_speed);
gc_state.modal.spindle = gc_block.modal.spindle;
}
pl_data->condition |= gc_state.modal.spindle; // Set condition flag for planner use.
// [8. Coolant control ]:
if (gc_state.modal.coolant != gc_block.modal.coolant) {
// NOTE: Coolant M-codes are modal. Only one command per line is allowed. But, multiple states
// can exist at the same time, while coolant disable clears all states.
coolant_sync(gc_block.modal.coolant);
if (gc_block.modal.coolant == COOLANT_DISABLE) { gc_state.modal.coolant = COOLANT_DISABLE; }
else { gc_state.modal.coolant |= gc_block.modal.coolant; }
}
pl_data->condition |= gc_state.modal.coolant; // Set condition flag for planner use.
// [9. Enable/disable feed rate or spindle overrides ]: NOT SUPPORTED. Always enabled.
// [10. Dwell ]:
if (gc_block.non_modal_command == NON_MODAL_DWELL) { mc_dwell(gc_block.values.p); }
// [11. Set active plane ]:
gc_state.modal.plane_select = gc_block.modal.plane_select;
// [12. Set length units ]:
gc_state.modal.units = gc_block.modal.units;
// [13. Cutter radius compensation ]: G41/42 NOT SUPPORTED
// gc_state.modal.cutter_comp = gc_block.modal.cutter_comp; // NOTE: Not needed since always disabled.
// [14. Cutter length compensation ]: G43.1 and G49 supported. G43 NOT SUPPORTED.
// NOTE: If G43 were supported, its operation wouldn't be any different from G43.1 in terms
// of execution. The error-checking step would simply load the offset value into the correct
// axis of the block XYZ value array.
if (axis_command == AXIS_COMMAND_TOOL_LENGTH_OFFSET ) { // Indicates a change.
gc_state.modal.tool_length = gc_block.modal.tool_length;
if (gc_state.modal.tool_length == TOOL_LENGTH_OFFSET_CANCEL) { // G49
gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS] = 0.0;
} // else G43.1
if ( gc_state.tool_length_offset != gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS] ) {
gc_state.tool_length_offset = gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS];
system_flag_wco_change();
}
}
// [15. Coordinate system selection ]:
if (gc_state.modal.coord_select != gc_block.modal.coord_select) {
gc_state.modal.coord_select = gc_block.modal.coord_select;
memcpy(gc_state.coord_system,block_coord_system,N_AXIS*sizeof(float));
system_flag_wco_change();
}
// [16. Set path control mode ]: G61.1/G64 NOT SUPPORTED
// gc_state.modal.control = gc_block.modal.control; // NOTE: Always default.
// [17. Set distance mode ]:
gc_state.modal.distance = gc_block.modal.distance;
// [18. Set retract mode ]: NOT SUPPORTED
// [19. Go to predefined position, Set G10, or Set axis offsets ]:
switch(gc_block.non_modal_command) {
case NON_MODAL_SET_COORDINATE_DATA:
settings_write_coord_data(coord_select,gc_block.values.ijk,false,true);
// Update system coordinate system if currently active.
if (gc_state.modal.coord_select == coord_select) {
memcpy(gc_state.coord_system,gc_block.values.ijk,N_AXIS*sizeof(float));
system_flag_wco_change();
}
break;
case NON_MODAL_GO_HOME_0: case NON_MODAL_GO_HOME_1:
// Move to intermediate position before going home. Obeys current coordinate system and offsets
// and absolute and incremental modes.
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
if (axis_command) { mc_line(gc_block.values.xyz, pl_data); }
mc_line(gc_block.values.ijk, pl_data);
memcpy(gc_state.position, gc_block.values.ijk, N_AXIS*sizeof(float));
break;
case NON_MODAL_SET_HOME_0:
settings_write_coord_data(SETTING_INDEX_G28,gc_state.position,false,true);
break;
case NON_MODAL_SET_HOME_1:
settings_write_coord_data(SETTING_INDEX_G30,gc_state.position,false,true);
break;
case NON_MODAL_SET_COORDINATE_OFFSET:
memcpy(gc_state.coord_offset,gc_block.values.xyz,sizeof(gc_block.values.xyz));
system_flag_wco_change();
break;
case NON_MODAL_RESET_COORDINATE_OFFSET:
clear_vector(gc_state.coord_offset); // Disable G92 offsets by zeroing offset vector.
system_flag_wco_change();
break;
}
// [20. Motion modes ]:
// NOTE: Commands G10,G28,G30,G92 lock out and prevent axis words from use in motion modes.
// Enter motion modes only if there are axis words or a motion mode command word in the block.
gc_state.modal.motion = gc_block.modal.motion;
if (gc_state.modal.motion != MOTION_MODE_NONE) {
if (axis_command == AXIS_COMMAND_MOTION_MODE) {
uint8_t gc_update_pos = GC_UPDATE_POS_TARGET;
if (gc_state.modal.motion == MOTION_MODE_LINEAR) {
mc_line(gc_block.values.xyz, pl_data);
} else if (gc_state.modal.motion == MOTION_MODE_SEEK) {
pl_data->condition |= PL_COND_FLAG_RAPID_MOTION; // Set rapid motion condition flag.
mc_line(gc_block.values.xyz, pl_data);
} else if ((gc_state.modal.motion == MOTION_MODE_CW_ARC) || (gc_state.modal.motion == MOTION_MODE_CCW_ARC)) {
mc_arc(gc_block.values.xyz, pl_data, gc_state.position, gc_block.values.ijk, gc_block.values.r,
axis_0, axis_1, axis_linear, bit_istrue(gc_parser_flags,GC_PARSER_ARC_IS_CLOCKWISE));
} else {
// NOTE: gc_block.values.xyz is returned from mc_probe_cycle with the updated position value. So
// upon a successful probing cycle, the machine position and the returned value should be the same.
#ifndef ALLOW_FEED_OVERRIDE_DURING_PROBE_CYCLES
pl_data->condition |= PL_COND_FLAG_NO_FEED_OVERRIDE;
#endif
gc_update_pos = mc_probe_cycle(gc_block.values.xyz, pl_data, gc_parser_flags);
}
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
if (gc_update_pos == GC_UPDATE_POS_TARGET) {
memcpy(gc_state.position, gc_block.values.xyz, sizeof(gc_block.values.xyz)); // gc_state.position[] = gc_block.values.xyz[]
} else if (gc_update_pos == GC_UPDATE_POS_SYSTEM) {
gc_sync_position(); // gc_state.position[] = sys_position
} // == GC_UPDATE_POS_NONE
}
}
// [21. Program flow ]:
// M0,M1,M2,M30: Perform non-running program flow actions. During a program pause, the buffer may
// refill and can only be resumed by the cycle start run-time command.
gc_state.modal.program_flow = gc_block.modal.program_flow;
if (gc_state.modal.program_flow) {
protocol_buffer_synchronize(); // Sync and finish all remaining buffered motions before moving on.
if (gc_state.modal.program_flow == PROGRAM_FLOW_PAUSED) {
if (sys.state != STATE_CHECK_MODE) {
system_set_exec_state_flag(EXEC_FEED_HOLD); // Use feed hold for program pause.
protocol_execute_realtime(); // Execute suspend.
}
} else { // == PROGRAM_FLOW_COMPLETED
// Upon program complete, only a subset of g-codes reset to certain defaults, according to
// LinuxCNC's program end descriptions and testing. Only modal groups [G-code 1,2,3,5,7,12]
// and [M-code 7,8,9] reset to [G1,G17,G90,G94,G40,G54,M5,M9,M48]. The remaining modal groups
// [G-code 4,6,8,10,13,14,15] and [M-code 4,5,6] and the modal words [F,S,T,H] do not reset.
gc_state.modal.motion = MOTION_MODE_LINEAR;
gc_state.modal.plane_select = PLANE_SELECT_XY;
gc_state.modal.distance = DISTANCE_MODE_ABSOLUTE;
gc_state.modal.feed_rate = FEED_RATE_MODE_UNITS_PER_MIN;
// gc_state.modal.cutter_comp = CUTTER_COMP_DISABLE; // Not supported.
gc_state.modal.coord_select = 0; // G54
gc_state.modal.spindle = SPINDLE_DISABLE;
gc_state.modal.coolant = COOLANT_DISABLE;
// gc_state.modal.override = OVERRIDE_DISABLE; // Not supported.
#ifdef RESTORE_OVERRIDES_AFTER_PROGRAM_END
sys.f_override = DEFAULT_FEED_OVERRIDE;
sys.r_override = DEFAULT_RAPID_OVERRIDE;
sys.spindle_speed_ovr = DEFAULT_SPINDLE_SPEED_OVERRIDE;
#endif
// Execute coordinate change and spindle/coolant stop.
if (sys.state != STATE_CHECK_MODE) {
if (!(settings_read_coord_data(gc_state.modal.coord_select,gc_state.coord_system))) { FAIL(STATUS_SETTING_READ_FAIL); }
system_flag_wco_change(); // Set to refresh immediately just in case something altered.
spindle_set_state(SPINDLE_DISABLE,0.0);
coolant_set_state(COOLANT_DISABLE);
}
report_feedback_message(MESSAGE_PROGRAM_END);
}
gc_state.modal.program_flow = PROGRAM_FLOW_RUNNING; // Reset program flow.
}
// TODO: % to denote start of program.
return(STATUS_OK);
}
/*
Not supported:
- Canned cycles
- Tool radius compensation
- A,B,C-axes
- Evaluation of expressions
- Variables
- Override control (TBD)
- Tool changes
- Switches
(*) Indicates optional parameter, enabled through config.h and re-compile
group 0 = {G92.2, G92.3} (Non modal: Cancel and re-enable G92 offsets)
group 1 = {G81 - G89} (Motion modes: Canned cycles)
group 4 = {M1} (Optional stop, ignored)
group 6 = {M6} (Tool change)
group 7 = {G41, G42} cutter radius compensation (G40 is supported)
group 8 = {G43} tool length offset (G43.1/G49 are supported)
group 8 = {M7*} enable mist coolant (* Compile-option)
group 9 = {M48, M49} enable/disable feed and speed override switches
group 10 = {G98, G99} return mode canned cycles
group 13 = {G61.1, G64} path control mode (G61 is supported)
*/