/* system.h - Header for system level commands and real-time processes Part of Grbl v0.9 Copyright (c) 2014-2015 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #ifndef system_h #define system_h // Define system header files and standard libraries used by Grbl #include #include #include #include #include #include #include #include #include #include #include // Define Grbl configuration and shared header files #include "config.h" #include "defaults.h" #include "cpu_map.h" #include "nuts_bolts.h" // Define system executor bit map. Used internally by realtime protocol as realtime command flags, // which notifies the main program to execute the specified realtime command asynchronously. // NOTE: The system executor uses an unsigned 8-bit volatile variable (8 flag limit.) The default // flags are always false, so the realtime protocol only needs to check for a non-zero value to // know when there is a realtime command to execute. #define EXEC_STATUS_REPORT bit(0) // bitmask 00000001 #define EXEC_CYCLE_START bit(1) // bitmask 00000010 #define EXEC_CYCLE_STOP bit(2) // bitmask 00000100 #define EXEC_FEED_HOLD bit(3) // bitmask 00001000 #define EXEC_RESET bit(4) // bitmask 00010000 // Alarm executor bit map. // NOTE: EXEC_CRITICAL_EVENT is an optional flag that must be set with an alarm flag. When enabled, // this halts Grbl into an infinite loop until the user aknowledges the problem and issues a soft- // reset command. For example, a hard limit event needs this type of halt and aknowledgement. #define EXEC_CRITICAL_EVENT bit(0) // bitmask 00000001 (SPECIAL FLAG. See NOTE:) #define EXEC_ALARM_HARD_LIMIT bit(0) // bitmask 00000010 #define EXEC_ALARM_SOFT_LIMIT bit(1) // bitmask 00000100 #define EXEC_ALARM_ABORT_CYCLE bit(2) // bitmask 00001000 #define EXEC_ALARM_PROBE_FAIL bit(3) // bitmask 00010000 // Define system state bit map. The state variable primarily tracks the individual functions // of Grbl to manage each without overlapping. It is also used as a messaging flag for // critical events. #define STATE_IDLE 0 // Must be zero. No flags. #define STATE_ALARM bit(0) // In alarm state. Locks out all g-code processes. Allows settings access. #define STATE_CHECK_MODE bit(1) // G-code check mode. Locks out planner and motion only. #define STATE_HOMING bit(2) // Performing homing cycle #define STATE_QUEUED bit(3) // Indicates buffered blocks, awaiting cycle start. #define STATE_CYCLE bit(4) // Cycle is running #define STATE_HOLD bit(5) // Executing feed hold // #define STATE_JOG bit(6) // Jogging mode is unique like homing. // Define global system variables typedef struct { uint8_t abort; // System abort flag. Forces exit back to main loop for reset. uint8_t state; // Tracks the current state of Grbl. volatile uint8_t rt_exec_state; // Global realtime executor bitflag variable for state management. See EXEC bitmasks. volatile uint8_t rt_exec_alarm; // Global realtime executor bitflag variable for setting various alarms. int32_t position[N_AXIS]; // Real-time machine (aka home) position vector in steps. // NOTE: This may need to be a volatile variable, if problems arise. uint8_t auto_start; // Planner auto-start flag. Toggled off during feed hold. Defaulted by settings. uint8_t homing_axis_lock; // Locks axes when limits engage. Used as an axis motion mask in the stepper ISR. volatile uint8_t probe_state; // Probing state value. Used to coordinate the probing cycle with stepper ISR. int32_t probe_position[N_AXIS]; // Last probe position in machine coordinates and steps. uint8_t probe_succeeded; // Tracks if last probing cycle was successful. } system_t; extern system_t sys; // Initialize the serial protocol void system_init(); // Executes an internal system command, defined as a string starting with a '$' uint8_t system_execute_line(char *line); // Execute the startup script lines stored in EEPROM upon initialization void system_execute_startup(char *line); // Returns machine position of axis 'idx'. Must be sent a 'step' array. float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx); // Updates a machine 'position' array based on the 'step' array sent. void system_convert_array_steps_to_mpos(float *position, int32_t *steps); #endif