/*
motion_control.c - cartesian robot controller.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
*/
#include
#include "config.h"
#include "motion_control.h"
#include
#include
#include
#include "nuts_bolts.h"
#include "stepper.h"
#define ONE_MINUTE_OF_MICROSECONDS 60000000
// Parameters when mode is MC_MODE_ARC
struct LinearMotionParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
uint16_t feed_rate;
int32_t target[3], // The target position in absolute steps
step_count[3], // Absolute steps of travel along each axis
counter[3], // A counter used in the bresenham algorithm for line plotting
maximum_steps; // The larges absolute step-count of any axis
};
struct ArcMotionParameters {
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
uint32_t x, y, target_x, target_y; // current position and target position in the
// local coordinate system of the arc where [0,0] is the
// center of the arc.
int target_direction_x, target_direction_y; // sign(target_x)*angular_direction precalculated for speed
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
// x2 is always 2*x, y2 is always 2*y
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
int32_t target[3]; // The target position in absolute steps
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
int incomplete; // True if the arc has not reached its target yet
};
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
read, but lets us initialize the state of the system by just clearing a single, contigous block of memory.
By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM.
*/
struct MotionControlState {
int8_t mode; // The current operation mode
int32_t position[3]; // The current position of the tool in absolute steps
int32_t pace; // Microseconds between each update in the current mode
union {
struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR
struct ArcMotionParameters arc; // variables used in MC_MODE_ARC
uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL
};
};
struct MotionControlState state;
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
void set_stepper_directions(int8_t *direction);
inline void step_steppers(uint8_t *enabled);
inline void step_axis(uint8_t axis);
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
void mc_init()
{
// Initialize state variables
memset(&state, 0, sizeof(state));
}
void mc_dwell(uint32_t milliseconds)
{
state.mode = MC_MODE_DWELL;
state.dwell_milliseconds = milliseconds;
}
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
prepare_linear_motion(trunc(x*X_STEPS_PER_MM), trunc(y*Y_STEPS_PER_MM), trunc(z*Z_STEPS_PER_MM), feed_rate, invert_feed_rate);
}
// Same as mc_linear_motion but accepts target in absolute step coordinates
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
{
state.mode = MC_MODE_LINEAR;
uint8_t axis; // loop variable
// Determine direction and travel magnitude for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
state.linear.step_count[axis] = abs(state.linear.target[axis] - state.position[axis]);
state.linear.direction[axis] = sign(state.linear.step_count[axis]);
}
// Find the magnitude of the axis with the longest travel
state.linear.maximum_steps = max(state.linear.step_count[Z_AXIS],
max(state.linear.step_count[X_AXIS], state.linear.step_count[Y_AXIS]));
// Set up a neat counter for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
state.linear.counter[axis] = -state.linear.maximum_steps/2;
}
// Set our direction pins
set_stepper_directions(state.linear.direction);
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
if (invert_feed_rate) {
state.pace =
(feed_rate*1000000)/state.linear.maximum_steps;
} else {
// Ask old Phytagoras to estimate how many steps our next move is going to take us:
uint32_t steps_to_travel =
ceil(sqrt(pow((X_STEPS_PER_MM*state.linear.step_count[X_AXIS]),2) +
pow((Y_STEPS_PER_MM*state.linear.step_count[Y_AXIS]),2) +
pow((Z_STEPS_PER_MM*state.linear.step_count[Z_AXIS]),2)));
state.pace =
((steps_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / state.linear.maximum_steps;
}
}
void execute_linear_motion()
{
// Flags to keep track of which axes to step
uint8_t step[3];
uint8_t axis; // loop variable
// Trace the line
clear_vector(step);
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
if (state.linear.target[axis] != state.position[axis])
{
state.linear.counter[axis] += state.linear.step_count[axis];
if (state.linear.counter[axis] > 0)
{
step[axis] = true;
state.linear.counter[axis] -= state.linear.maximum_steps;
state.position[axis] += state.linear.direction[axis];
}
}
}
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
step_steppers(step);
} else {
state.mode = MC_MODE_AT_REST;
}
}
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate)
{
state.mode = MC_MODE_ARC;
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
state.arc.angular_direction = sign(angular_travel);
// Calculate the initial position and target position in the local coordinate system of the arc
state.arc.x = round(sin(theta)*radius*X_STEPS_PER_MM);
state.arc.y = round(cos(theta)*radius*X_STEPS_PER_MM);
state.arc.target_x = trunc(sin(theta+angular_travel)*(radius*X_STEPS_PER_MM-0.5));
state.arc.target_y = trunc(cos(theta+angular_travel)*(radius*X_STEPS_PER_MM-0.5));
// Precalculate these values to optimize target detection
state.arc.target_direction_x = sign(state.arc.target_x)*state.arc.angular_direction;
state.arc.target_direction_y = sign(state.arc.target_y)*state.arc.angular_direction;
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
// are exactly on top of the arc.
state.arc.error = round(pow(state.arc.x,2) + pow(state.arc.y,2) - pow(radius,2));
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
// by keeping track of the doubles of the arc coordinates at all times.
state.arc.x2 = 2*state.arc.x;
state.arc.y2 = 2*state.arc.y;
// Set up a vector with the steppers we are going to use tracing the plane of this arc
clear_vector(state.arc.plane_steppers);
state.arc.plane_steppers[axis_1] = 1;
state.arc.plane_steppers[axis_2] = 1;
// And map the local coordinate system of the arc onto the tool axes of the selected plane
state.arc.axis_x = axis_1;
state.arc.axis_y = axis_2;
// mm/second -> microseconds/step. Assumes all axes have the same steps/mm as the x axis
state.pace =
ONE_MINUTE_OF_MICROSECONDS / (feed_rate * X_STEPS_PER_MM);
state.arc.incomplete = true;
}
#define check_arc_target \
if ((state.arc.x * state.arc.target_direction_y >= \
state.arc.target_x * state.arc.target_direction_y) && \
(state.arc.y * state.arc.target_direction_x <= \
state.arc.target_y * state.arc.target_direction_x)) \
{ state.arc.incomplete = false; }
// Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy
void step_arc_along_x(int8_t dx, int8_t dy)
{
uint32_t diagonal_error;
state.arc.x+=dx;
state.arc.error += 1+state.arc.x2*dx;
state.arc.x2 += 2*dx;
diagonal_error = state.arc.error + 1 + state.arc.y2*dy;
if(abs(state.arc.error) < abs(diagonal_error)) {
state.arc.y += dy;
state.arc.y2 += 2*dy;
state.arc.error = diagonal_error;
step_steppers(state.arc.plane_steppers); // step diagonal
} else {
step_axis(state.arc.axis_x); // step straight
}
check_arc_target;
}
// Internal method used by execute_arc to trace vertically in the general direction provided by dx and dy
void step_arc_along_y(int8_t dx, int8_t dy)
{
uint32_t diagonal_error;
state.arc.y+=dy;
state.arc.error += 1+state.arc.y2*dy;
state.arc.y2 += 2*dy;
diagonal_error = state.arc.error + 1 + state.arc.x2*dx;
if(abs(state.arc.error) < abs(diagonal_error)) {
state.arc.x += dx;
state.arc.x2 += 2*dx;
state.arc.error = diagonal_error;
step_steppers(state.arc.plane_steppers); // step diagonal
} else {
step_axis(state.arc.axis_y); // step straight
}
check_arc_target;
}
// Take dx and dy which are local to the arc being generated and map them on to the
// selected tool-space-axes for the current arc.
void map_local_arc_directions_to_stepper_directions(int8_t dx, int8_t dy)
{
int8_t direction[3];
direction[state.arc.axis_x] = dx;
direction[state.arc.axis_y] = dy;
set_stepper_directions(direction);
}
/*
Quandrants of the arc
\ 7|0 /
\ | /
6 \|/ 1 y+
---------|-----------
5 /|\ 2 y-
/ | \
x- / 4|3 \ x+ */
#ifdef UNROLLED_ARC_LOOP // This function only used by the unrolled arc loop
// Determine within which quadrant of the circle the provided coordinate falls
int quadrant(uint32_t x,uint32_t y)
{
// determine if the coordinate is in the quadrants 0,3,4 or 7
register int quad0347 = abs(x)state.arc.y)) { step_arc_along_x(1,-1); }
case 1:
map_local_arc_directions_to_stepper_directions(1,-1);
while(state.arc.incomplete && (state.arc.y>0)) { step_arc_along_y(1,-1); }
case 2:
map_local_arc_directions_to_stepper_directions(-1,-1);
while(state.arc.incomplete && (state.arc.y>-state.arc.x)) { step_arc_along_y(-1,-1); }
case 3:
map_local_arc_directions_to_stepper_directions(-1,-1);
while(state.arc.incomplete && (state.arc.x>0)) { step_arc_along_x(-1,-1); }
case 4:
map_local_arc_directions_to_stepper_directions(-1,1);
while(state.arc.incomplete && (state.arc.y-state.arc.x)) { step_arc_along_x(-1,-1); }
case 6:
map_local_arc_directions_to_stepper_directions(-1,-1);
while(state.arc.incomplete && (state.arc.y>0)) { step_arc_along_y(-1,-1); }
case 5:
map_local_arc_directions_to_stepper_directions(1,-1);
while(state.arc.incomplete && (state.arc.y>state.arc.x)) { step_arc_along_y(1,-1); }
case 4:
map_local_arc_directions_to_stepper_directions(1,-1);
while(state.arc.incomplete && (state.arc.x<0)) { step_arc_along_x(1,-1); }
case 3:
map_local_arc_directions_to_stepper_directions(1,1);
while(state.arc.incomplete && (state.arc.y<-state.arc.x)) { step_arc_along_x(1,1); }
case 2:
map_local_arc_directions_to_stepper_directions(1,1);
while(state.arc.incomplete && (state.arc.y<0)) { step_arc_along_y(1,1); }
case 1:
map_local_arc_directions_to_stepper_directions(-1,1);
while(state.arc.incomplete && (state.arc.y0)) { step_arc_along_x(-1,1); }
}
}
#else
dx = (state.arc.y!=0) ? sign(state.arc.y) * state.arc.angular_direction : -sign(state.arc.x);
dy = (state.arc.x!=0) ? -sign(state.arc.x) * state.arc.angular_direction : -sign(state.arc.y);
if (fabs(state.arc.x)>(7-X_DIRECTION_BIT)) |
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT))
);
}
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
// stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to
// 1, and the rest to 0.
inline void step_steppers(uint8_t *enabled)
{
st_buffer_step(direction_bits | enabled[X_AXIS]<