/* motion_control.c - cartesian robot controller. Part of Grbl Copyright (c) 2009 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm' and the lecture 'Circle Drawing Algorithms' by Leonard McMillan. http://en.wikipedia.org/wiki/Midpoint_circle_algorithm http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html */ #include #include "config.h" #include "motion_control.h" #include #include #include #include "nuts_bolts.h" #include "stepper.h" #define ONE_MINUTE_OF_MICROSECONDS 60000000 // Parameters when mode is MC_MODE_ARC struct LinearMotionParameters { int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1) uint16_t feed_rate; int32_t target[3], // The target position in absolute steps step_count[3], // Absolute steps of travel along each axis counter[3], // A counter used in the bresenham algorithm for line plotting maximum_steps; // The larges absolute step-count of any axis }; struct ArcMotionParameters { int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise uint32_t x, y, target_x, target_y; // current position and target position in the // local coordinate system of the arc where [0,0] is the // center of the arc. int target_direction_x, target_direction_y; // sign(target_x)*angular_direction precalculated for speed int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2), // x2 is always 2*x, y2 is always 2*y uint8_t axis_x, axis_y; // maps the arc axes to stepper axes int32_t target[3]; // The target position in absolute steps int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0 int incomplete; // True if the arc has not reached its target yet }; /* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to read, but lets us initialize the state of the system by just clearing a single, contigous block of memory. By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM. */ struct MotionControlState { int8_t mode; // The current operation mode int32_t position[3]; // The current position of the tool in absolute steps int32_t pace; // Microseconds between each update in the current mode union { struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR struct ArcMotionParameters arc; // variables used in MC_MODE_ARC uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL }; }; struct MotionControlState state; uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction void set_stepper_directions(int8_t *direction); inline void step_steppers(uint8_t *enabled); inline void step_axis(uint8_t axis); void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate); void mc_init() { // Initialize state variables memset(&state, 0, sizeof(state)); } void mc_dwell(uint32_t milliseconds) { state.mode = MC_MODE_DWELL; state.dwell_milliseconds = milliseconds; } // Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement. void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate) { prepare_linear_motion(trunc(x*X_STEPS_PER_MM), trunc(y*Y_STEPS_PER_MM), trunc(z*Z_STEPS_PER_MM), feed_rate, invert_feed_rate); } // Same as mc_linear_motion but accepts target in absolute step coordinates void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate) { state.mode = MC_MODE_LINEAR; uint8_t axis; // loop variable // Determine direction and travel magnitude for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { state.linear.step_count[axis] = abs(state.linear.target[axis] - state.position[axis]); state.linear.direction[axis] = sign(state.linear.step_count[axis]); } // Find the magnitude of the axis with the longest travel state.linear.maximum_steps = max(state.linear.step_count[Z_AXIS], max(state.linear.step_count[X_AXIS], state.linear.step_count[Y_AXIS])); // Set up a neat counter for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { state.linear.counter[axis] = -state.linear.maximum_steps/2; } // Set our direction pins set_stepper_directions(state.linear.direction); // Calculate the microseconds we need to wait between each step to achieve the desired feed rate if (invert_feed_rate) { state.pace = (feed_rate*1000000)/state.linear.maximum_steps; } else { // Ask old Phytagoras to estimate how many steps our next move is going to take us: uint32_t steps_to_travel = ceil(sqrt(pow((X_STEPS_PER_MM*state.linear.step_count[X_AXIS]),2) + pow((Y_STEPS_PER_MM*state.linear.step_count[Y_AXIS]),2) + pow((Z_STEPS_PER_MM*state.linear.step_count[Z_AXIS]),2))); state.pace = ((steps_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / state.linear.maximum_steps; } } void execute_linear_motion() { // Flags to keep track of which axes to step uint8_t step[3]; uint8_t axis; // loop variable // Trace the line clear_vector(step); for(axis = X_AXIS; axis <= Z_AXIS; axis++) { if (state.linear.target[axis] != state.position[axis]) { state.linear.counter[axis] += state.linear.step_count[axis]; if (state.linear.counter[axis] > 0) { step[axis] = true; state.linear.counter[axis] -= state.linear.maximum_steps; state.position[axis] += state.linear.direction[axis]; } } } if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) { step_steppers(step); } else { state.mode = MC_MODE_AT_REST; } } // Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // circle in millimeters. axis_1 and axis_2 selects the plane in tool space. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate) { state.mode = MC_MODE_ARC; // Determine angular direction (+1 = clockwise, -1 = counterclockwise) state.arc.angular_direction = sign(angular_travel); // Calculate the initial position and target position in the local coordinate system of the arc state.arc.x = round(sin(theta)*radius*X_STEPS_PER_MM); state.arc.y = round(cos(theta)*radius*X_STEPS_PER_MM); state.arc.target_x = trunc(sin(theta+angular_travel)*(radius*X_STEPS_PER_MM-0.5)); state.arc.target_y = trunc(cos(theta+angular_travel)*(radius*X_STEPS_PER_MM-0.5)); // Precalculate these values to optimize target detection state.arc.target_direction_x = sign(state.arc.target_x)*state.arc.angular_direction; state.arc.target_direction_y = sign(state.arc.target_y)*state.arc.angular_direction; // The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error // <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we // are exactly on top of the arc. state.arc.error = round(pow(state.arc.x,2) + pow(state.arc.y,2) - pow(radius,2)); // Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications // by keeping track of the doubles of the arc coordinates at all times. state.arc.x2 = 2*state.arc.x; state.arc.y2 = 2*state.arc.y; // Set up a vector with the steppers we are going to use tracing the plane of this arc clear_vector(state.arc.plane_steppers); state.arc.plane_steppers[axis_1] = 1; state.arc.plane_steppers[axis_2] = 1; // And map the local coordinate system of the arc onto the tool axes of the selected plane state.arc.axis_x = axis_1; state.arc.axis_y = axis_2; // mm/second -> microseconds/step. Assumes all axes have the same steps/mm as the x axis state.pace = ONE_MINUTE_OF_MICROSECONDS / (feed_rate * X_STEPS_PER_MM); state.arc.incomplete = true; } #define check_arc_target \ if ((state.arc.x * state.arc.target_direction_y >= \ state.arc.target_x * state.arc.target_direction_y) && \ (state.arc.y * state.arc.target_direction_x <= \ state.arc.target_y * state.arc.target_direction_x)) \ { state.arc.incomplete = false; } // Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy void step_arc_along_x(int8_t dx, int8_t dy) { uint32_t diagonal_error; state.arc.x+=dx; state.arc.error += 1+state.arc.x2*dx; state.arc.x2 += 2*dx; diagonal_error = state.arc.error + 1 + state.arc.y2*dy; if(abs(state.arc.error) < abs(diagonal_error)) { state.arc.y += dy; state.arc.y2 += 2*dy; state.arc.error = diagonal_error; step_steppers(state.arc.plane_steppers); // step diagonal } else { step_axis(state.arc.axis_x); // step straight } check_arc_target; } // Internal method used by execute_arc to trace vertically in the general direction provided by dx and dy void step_arc_along_y(int8_t dx, int8_t dy) { uint32_t diagonal_error; state.arc.y+=dy; state.arc.error += 1+state.arc.y2*dy; state.arc.y2 += 2*dy; diagonal_error = state.arc.error + 1 + state.arc.x2*dx; if(abs(state.arc.error) < abs(diagonal_error)) { state.arc.x += dx; state.arc.x2 += 2*dx; state.arc.error = diagonal_error; step_steppers(state.arc.plane_steppers); // step diagonal } else { step_axis(state.arc.axis_y); // step straight } check_arc_target; } // Take dx and dy which are local to the arc being generated and map them on to the // selected tool-space-axes for the current arc. void map_local_arc_directions_to_stepper_directions(int8_t dx, int8_t dy) { int8_t direction[3]; direction[state.arc.axis_x] = dx; direction[state.arc.axis_y] = dy; set_stepper_directions(direction); } /* Quandrants of the arc \ 7|0 / \ | / 6 \|/ 1 y+ ---------|----------- 5 /|\ 2 y- / | \ x- / 4|3 \ x+ */ #ifdef UNROLLED_ARC_LOOP // This function only used by the unrolled arc loop // Determine within which quadrant of the circle the provided coordinate falls int quadrant(uint32_t x,uint32_t y) { // determine if the coordinate is in the quadrants 0,3,4 or 7 register int quad0347 = abs(x)state.arc.y)) { step_arc_along_x(1,-1); } case 1: map_local_arc_directions_to_stepper_directions(1,-1); while(state.arc.incomplete && (state.arc.y>0)) { step_arc_along_y(1,-1); } case 2: map_local_arc_directions_to_stepper_directions(-1,-1); while(state.arc.incomplete && (state.arc.y>-state.arc.x)) { step_arc_along_y(-1,-1); } case 3: map_local_arc_directions_to_stepper_directions(-1,-1); while(state.arc.incomplete && (state.arc.x>0)) { step_arc_along_x(-1,-1); } case 4: map_local_arc_directions_to_stepper_directions(-1,1); while(state.arc.incomplete && (state.arc.y-state.arc.x)) { step_arc_along_x(-1,-1); } case 6: map_local_arc_directions_to_stepper_directions(-1,-1); while(state.arc.incomplete && (state.arc.y>0)) { step_arc_along_y(-1,-1); } case 5: map_local_arc_directions_to_stepper_directions(1,-1); while(state.arc.incomplete && (state.arc.y>state.arc.x)) { step_arc_along_y(1,-1); } case 4: map_local_arc_directions_to_stepper_directions(1,-1); while(state.arc.incomplete && (state.arc.x<0)) { step_arc_along_x(1,-1); } case 3: map_local_arc_directions_to_stepper_directions(1,1); while(state.arc.incomplete && (state.arc.y<-state.arc.x)) { step_arc_along_x(1,1); } case 2: map_local_arc_directions_to_stepper_directions(1,1); while(state.arc.incomplete && (state.arc.y<0)) { step_arc_along_y(1,1); } case 1: map_local_arc_directions_to_stepper_directions(-1,1); while(state.arc.incomplete && (state.arc.y0)) { step_arc_along_x(-1,1); } } } #else dx = (state.arc.y!=0) ? sign(state.arc.y) * state.arc.angular_direction : -sign(state.arc.x); dy = (state.arc.x!=0) ? -sign(state.arc.x) * state.arc.angular_direction : -sign(state.arc.y); if (fabs(state.arc.x)>(7-X_DIRECTION_BIT)) | ((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) | ((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)) ); } // Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one // stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to // 1, and the rest to 0. inline void step_steppers(uint8_t *enabled) { st_buffer_step(direction_bits | enabled[X_AXIS]<