/* protocol.c - the serial protocol master control unit Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2011-2012 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include #include "protocol.h" #include "gcode.h" #include "serial.h" #include "print.h" #include "settings.h" #include "config.h" #include #include "nuts_bolts.h" #include #include "stepper.h" #include "planner.h" static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated. static uint8_t char_counter; // Last character counter in line variable. static uint8_t iscomment; // Comment/block delete flag for processor to ignore comment characters. // Prints all status messages, an 'ok' or 'error', after Grbl has processed a line of incoming // serial data, whether this was a g-code block or grbl setting command. void protocol_status_message(int8_t status_code) { // TODO: Compile time option to only return numeric codes for GUIs. if (status_code == 0) { // STATUS_OK printPgmString(PSTR("ok\r\n")); } else { printPgmString(PSTR("error: ")); // All critical error codes are greater than zero. These are defined to be any error // that may cause damage by crashing or improper g-code inputs and that are susceptible // to Grbl's alarm mode which will stop all processes, if the user enables this option. if (status_code > 0) { // TODO: Install option to enter alarm mode upon any critical error. switch(status_code) { case STATUS_BAD_NUMBER_FORMAT: printPgmString(PSTR("Bad number format")); break; case STATUS_EXPECTED_COMMAND_LETTER: printPgmString(PSTR("Expected command letter")); break; case STATUS_UNSUPPORTED_STATEMENT: printPgmString(PSTR("Unsupported statement")); break; case STATUS_FLOATING_POINT_ERROR: printPgmString(PSTR("Floating point error")); break; case STATUS_MODAL_GROUP_VIOLATION: printPgmString(PSTR("Modal group violation")); break; case STATUS_INVALID_STATEMENT: printPgmString(PSTR("Invalid gcode statement")); break; case STATUS_SETTING_DISABLED: printPgmString(PSTR("Grbl setting disabled")); break; case STATUS_HARD_LIMIT: printPgmString(PSTR("Limit triggered ")); break; } // All other non-critical error codes are less than zero. These are defined to be any // error that is not susceptible to the alarm mode. Typically settings responses. } else { switch(status_code) { case STATUS_SETTING_INVALID: printPgmString(PSTR("Invalid setting statement")); break; case STATUS_SETTING_STEPS_NEG: printPgmString(PSTR("Steps/mm must be > 0.0")); break; case STATUS_SETTING_STEP_PULSE_MIN: printPgmString(PSTR("Step pulse must be >= 3 microseconds")); break; } } printPgmString(PSTR("\r\n")); } } // Prints Grbl warning messages. This serves as a centralized method to provide additional // user feedback for things that do not pass through the protocol_execute_line() function. // This includes things like initialization checks or setup warnings when features are // enabled. This function maybe called from anywhere in Grbl at the point of concern. void protocol_warning_message(int8_t warning_code) { // TODO: Install silence warning messages option in settings printPgmString(PSTR("warning: ")); switch(warning_code) { case WARNING_HOMING_ENABLE: printPgmString(PSTR("Install all axes limit switches before use")); break; case WARNING_SETTING_READ_FAIL: printPgmString(PSTR("Failed to read EEPROM settings. Using defaults")); break; } printPgmString(PSTR("\r\n")); } void protocol_status_report() { // TODO: Status report data is written to the user here. This function should be able to grab a // real-time snapshot of the stepper subprogram and the actual location of the CNC machine. At a // minimum, status report should return real-time location information. Other important information // may be distance to go on block, processed block id, and feed rate. A secondary, non-critical // status report may include g-code state, i.e. inch mode, plane mode, absolute mode, etc. // The report generated must be as short as possible, yet still provide the user easily readable // information, i.e. '[0.23,120.4,2.4]'. This is necessary as it minimizes the computational // overhead and allows grbl to keep running smoothly, especially with g-code programs with fast, // short line segments and interface setups that require real-time status reports (5-20Hz). // **Under construction** Bare-bones status report. Provides real-time machine position relative to // the system power on location (0,0,0) and work coordinate position (G54 and G92 applied). // The following are still needed: user setting of output units (mm|inch), compressed (non-human // readable) data for interfaces?, save last known position in EEPROM?, code optimizations, solidify // the reporting schemes, move to a separate .c file for easy user accessibility, and setting the // home position by the user (likely through '$' setting interface). // Successfully tested at a query rate of 10-20Hz while running a gauntlet of programs at various // speeds. uint8_t i; int32_t current_position[3]; // Copy current state of the system position variable memcpy(current_position,sys.position,sizeof(sys.position)); float print_position[3]; // Report machine position printPgmString(PSTR("MPos:[")); for (i=0; i<= 2; i++) { print_position[i] = current_position[i]/settings.steps_per_mm[i]; if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) { print_position[i] *= INCH_PER_MM; } printFloat(print_position[i]); if (i < 2) { printPgmString(PSTR(",")); } else { printPgmString(PSTR("]")); } } // Report work position printPgmString(PSTR(",WPos:[")); for (i=0; i<= 2; i++) { if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) { print_position[i] -= (sys.coord_system[sys.coord_select][i]+sys.coord_offset[i])*INCH_PER_MM; } else { print_position[i] -= sys.coord_system[sys.coord_select][i]+sys.coord_offset[i]; } printFloat(print_position[i]); if (i < 2) { printPgmString(PSTR(",")); } else { printPgmString(PSTR("]")); } } printPgmString(PSTR("\r\n")); } void protocol_init() { // Print grbl initialization message printPgmString(PSTR("\r\nGrbl " GRBL_VERSION)); printPgmString(PSTR("\r\n'$' to dump current settings\r\n")); char_counter = 0; // Reset line input iscomment = false; } // Executes run-time commands, when required. This is called from various check points in the main // program, primarily where there may be a while loop waiting for a buffer to clear space or any // point where the execution time from the last check point may be more than a fraction of a second. // This is a way to execute runtime commands asynchronously (aka multitasking) with grbl's g-code // parsing and planning functions. This function also serves as an interface for the interrupts to // set the system runtime flags, where only the main program handles them, removing the need to // define more computationally-expensive volatile variables. // NOTE: The sys.execute variable flags are set by the serial read subprogram, except where noted. void protocol_execute_runtime() { if (sys.execute) { // Enter only if any bit flag is true uint8_t rt_exec = sys.execute; // Avoid calling volatile multiple times // System alarm. Something has gone wrong. Disable everything until system reset. if (rt_exec & EXEC_ALARM) { protocol_status_message(STATUS_HARD_LIMIT); while (bit_isfalse(sys.execute,EXEC_RESET)) { sleep_mode(); } bit_false(sys.execute,EXEC_ALARM); } // System abort. Steppers have already been force stopped. if (rt_exec & EXEC_RESET) { sys.abort = true; return; // Nothing else to do but exit. } // Execute and serial print status if (rt_exec & EXEC_STATUS_REPORT) { protocol_status_report(); bit_false(sys.execute,EXEC_STATUS_REPORT); } // Initiate stepper feed hold if (rt_exec & EXEC_FEED_HOLD) { st_feed_hold(); // Initiate feed hold. bit_false(sys.execute,EXEC_FEED_HOLD); } // Reinitializes the stepper module running flags and re-plans the buffer after a feed hold. // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. if (rt_exec & EXEC_CYCLE_STOP) { st_cycle_reinitialize(); bit_false(sys.execute,EXEC_CYCLE_STOP); } if (rt_exec & EXEC_CYCLE_START) { st_cycle_start(); // Issue cycle start command to stepper subsystem if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) { sys.auto_start = true; // Re-enable auto start after feed hold. } bit_false(sys.execute,EXEC_CYCLE_START); } } } // Executes one line of input according to protocol int8_t protocol_execute_line(char *line) { if(line[0] == '$') { // TODO: Re-write this '$' as a way to change runtime settings without having to reset, i.e. // auto-starting, status query output formatting and type, jog mode (axes, direction, and // nominal feedrate), toggle block delete, etc. This differs from the EEPROM settings, as they // are considered defaults and loaded upon startup/reset. // This use is envisioned where '$' itself dumps settings and help. Defined characters // proceeding the '$' may be used to setup modes, such as jog mode with a '$J=X100' for X-axis // motion with a nominal feedrate of 100mm/min. Writing EEPROM settings will likely stay the // same or similar. Should be worked out in upcoming releases. return(settings_execute_line(line)); // Delegate lines starting with '$' to the settings module // } else if { // // JOG MODE // // TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be // susceptible to other runtime commands except for e-stop. The jogging function is intended to // be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped // steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would // start motion and toggle off would initiate a deceleration to stop. One could 'feather' the // motion by repeatedly toggling to slow the motion to the desired location. Location data would // need to be updated real-time and supplied to the user through status queries. // More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are // handled by the planner. It would be possible for the jog subprogram to insert blocks into the // block buffer without having the planner plan them. It would need to manage de/ac-celerations // on its own carefully. This approach could be effective and possibly size/memory efficient. } else { return(gc_execute_line(line)); // Everything else is gcode } } // Process one line of incoming serial data. Remove unneeded characters and capitalize. void protocol_process() { uint8_t c; while((c = serial_read()) != SERIAL_NO_DATA) { if ((c == '\n') || (c == '\r')) { // End of line reached // Runtime command check point before executing line. Prevent any furthur line executions. // NOTE: If there is no line, this function should quickly return to the main program when // the buffer empties of non-executable data. protocol_execute_runtime(); if (sys.abort) { return; } // Bail to main program upon system abort if (char_counter > 0) {// Line is complete. Then execute! line[char_counter] = 0; // Terminate string protocol_status_message(protocol_execute_line(line)); } else { // Empty or comment line. Skip block. protocol_status_message(STATUS_OK); // Send status message for syncing purposes. } char_counter = 0; // Reset line buffer index iscomment = false; // Reset comment flag } else { if (iscomment) { // Throw away all comment characters if (c == ')') { // End of comment. Resume line. iscomment = false; } } else { if (c <= ' ') { // Throw away whitepace and control characters } else if (c == '/') { // Disable block delete and throw away characters. Will ignore until EOL. #if BLOCK_DELETE_ENABLE iscomment = true; #endif } else if (c == '(') { // Enable comments flag and ignore all characters until ')' or EOL. iscomment = true; } else if (char_counter >= LINE_BUFFER_SIZE-1) { // Throw away any characters beyond the end of the line buffer } else if (c >= 'a' && c <= 'z') { // Upcase lowercase line[char_counter++] = c-'a'+'A'; } else { line[char_counter++] = c; } } } } }