/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2011-2013 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
#include
#include "stepper.h"
#include "config.h"
#include "settings.h"
#include "planner.h"
#include "nuts_bolts.h"
// Some useful constants
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define RAMP_NOOP_CRUISE 0
#define RAMP_ACCEL 1
#define RAMP_DECEL 2
#define LOAD_NOOP 0
#define LOAD_SEGMENT 1
#define LOAD_BLOCK 2
#define ST_END_OF_BLOCK bit(0)
#define ST_ACCEL bit(1)
#define ST_DECEL bit(2)
#define SEGMENT_BUFFER_SIZE 6
// Stepper state variable. Contains running data and trapezoid variables.
typedef struct {
// Used by the bresenham line algorithm
int32_t counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z;
uint8_t segment_steps_remaining; // Steps remaining in line segment motion
// Used by inverse time algorithm to track step rate
int32_t counter_d; // Inverse time distance traveled since last step event
uint32_t delta_d; // Inverse time distance traveled per interrupt tick
uint32_t d_per_tick;
// Used by the stepper driver interrupt
uint8_t execute_step; // Flags step execution for each interrupt.
uint8_t step_pulse_time; // Step pulse reset time after step rise
uint8_t out_bits; // The next stepping-bits to be output
uint8_t load_flag;
uint8_t ramp_count;
uint8_t ramp_type;
} stepper_t;
static stepper_t st;
// Stores stepper buffer common data for a planner block. Data can change mid-block when the planner
// updates the remaining block velocity profile with a more optimal plan or a feedrate override occurs.
// NOTE: Normally, this buffer is only partially used, but can fill up completely in certain conditions.
typedef struct {
int32_t step_events_remaining; // Tracks step event count for the executing planner block
uint32_t d_next; // Scaled distance to next step
uint32_t initial_rate; // Initialized step rate at re/start of a planner block
uint32_t nominal_rate; // The nominal step rate for this block in step_events/minute
uint32_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive)
int32_t decelerate_after;
float mm_per_step;
} st_data_t;
static st_data_t segment_data[SEGMENT_BUFFER_SIZE];
// Primary stepper buffer. Contains small, short line segments for the stepper algorithm to execute checked
// out incrementally from the first block in the planner buffer. These step segments
typedef struct {
uint8_t n_step; // Number of step events to be executed for this segment
uint8_t st_data_index; // Stepper buffer common data index. Uses this information to execute this segment.
uint8_t flag; // Stepper algorithm bit-flag for special execution conditions.
} st_segment_t;
static st_segment_t segment_buffer[SEGMENT_BUFFER_SIZE];
static volatile uint8_t segment_buffer_tail;
static volatile uint8_t segment_buffer_head;
static uint8_t segment_next_head;
static volatile uint8_t busy; // Used to avoid ISR nesting of the "Stepper Driver Interrupt". Should never occur though.
static plan_block_t *pl_current_block; // A pointer to the planner block currently being traced
static st_segment_t *st_current_segment;
static st_data_t *st_current_data;
// Pointers for the step segment being prepped from the planner buffer. Accessed only by the
// main program. Pointers may be planning segments or planner blocks ahead of what being executed.
static plan_block_t *pl_prep_block; // A pointer to the planner block being prepped into the stepper buffer
static uint8_t pl_prep_index;
static st_data_t *st_prep_data;
static uint8_t st_data_prep_index;
static uint8_t pl_partial_block_flag;
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static uint8_t next_block_index(uint8_t block_index)
{
block_index++;
if (block_index == SEGMENT_BUFFER_SIZE) { block_index = 0; }
return(block_index);
}
static uint8_t next_block_pl_index(uint8_t block_index)
{
block_index++;
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
return(block_index);
}
/* __________________________
/| |\ _________________ ^
/ | | \ /| |\ |
/ | | \ / | | \ s
/ | | | | | \ p
/ | | | | | \ e
+-----+------------------------+---+--+---------------+----+ e
| BLOCK 1 | BLOCK 2 | d
time ----->
The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates by block->rate_delta
until reaching cruising speed block->nominal_rate, and/or until step_events_remaining reaches block->decelerate_after
after which it decelerates until the block is completed. The driver uses constant acceleration, which is applied as
+/- block->rate_delta velocity increments by the midpoint rule at each ACCELERATION_TICKS_PER_SECOND.
*/
// Stepper state initialization. Cycle should only start if the st.cycle_start flag is
// enabled. Startup init and limits call this function but shouldn't start the cycle.
void st_wake_up()
{
// Enable steppers by resetting the stepper disable port
if (bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE)) {
STEPPERS_DISABLE_PORT |= (1<> 3);
// Enable stepper driver interrupt
st.execute_step = false;
st.load_flag = LOAD_BLOCK;
TCNT2 = 0; // Clear Timer2
TIMSK2 |= (1<n_step;
// Check if the counters need to be reset for a new planner block
if (st.load_flag == LOAD_BLOCK) {
pl_current_block = plan_get_current_block(); // Should always be there. Stepper buffer handles this.
st_current_data = &segment_data[segment_buffer[segment_buffer_tail].st_data_index]; //st_current_segment->st_data_index];
// Initialize direction bits for block
st.out_bits = pl_current_block->direction_bits ^ settings.invert_mask;
st.execute_step = true; // Set flag to set direction bits upon next ISR tick.
// Initialize Bresenham line counters
st.counter_x = (pl_current_block->step_event_count >> 1);
st.counter_y = st.counter_x;
st.counter_z = st.counter_x;
// Initialize inverse time and step rate counter data
st.counter_d = st_current_data->d_next; // d_next always greater than delta_d.
if (st.delta_d < MINIMUM_STEP_RATE) { st.d_per_tick = MINIMUM_STEP_RATE; }
else { st.d_per_tick = st.delta_d; }
// During feed hold, do not update rate, ramp type, or ramp counters. Keep decelerating.
// if (sys.state == STATE_CYCLE) {
st.delta_d = st_current_data->initial_rate;
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2; // Initialize ramp counter via midpoint rule
if (st.delta_d == st_current_data->nominal_rate) { st.ramp_type = RAMP_NOOP_CRUISE; }
else { st.ramp_type = RAMP_ACCEL; }
// }
}
// Acceleration and cruise handled by ramping. Just check if deceleration needs to begin.
if ( st_current_segment->flag & (ST_DECEL | ST_ACCEL) ) {
/* Compute correct ramp count for a ramp change. Upon a switch from acceleration to deceleration,
or vice-versa, the new ramp count must be set to trigger the next acceleration tick equal to
the number of ramp ISR ticks counted since the last acceleration tick. This is ensures the
ramp is executed exactly as the plan dictates. Otherwise, when a ramp begins from a known
rate (nominal/cruise or initial), the ramp count must be set to ISR_TICKS_PER_ACCELERATION_TICK/2
as mandated by the mid-point rule. For these conditions, the ramp count has been pre-initialized
such that the following computation is still correct. */
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK-st.ramp_count;
if ( st_current_segment->flag & ST_DECEL ) { st.ramp_type = RAMP_DECEL; }
else { st.ramp_type = RAMP_ACCEL; }
}
st.load_flag = LOAD_NOOP; // Segment motion loaded. Set no-operation flag to skip during execution.
} else {
// Can't discard planner block here if a feed hold stops in middle of block.
st_go_idle();
bit_true(sys.execute,EXEC_CYCLE_STOP); // Flag main program for cycle end
return; // Nothing to do but exit.
}
}
// Adjust inverse time counter for ac/de-celerations
// NOTE: Accelerations are handled by the stepper algorithm as it's thought to be more computationally
// efficient on the Arduino AVR. This could may not be true with higher ISR frequencies or faster CPUs.
if (st.ramp_type) { // Ignored when ramp type is NOOP_CRUISE
st.ramp_count--; // Tick acceleration ramp counter
if (st.ramp_count == 0) { // Adjust step rate when its time
if (st.ramp_type == RAMP_ACCEL) { // Adjust velocity for acceleration
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK; // Reload ramp counter
st.delta_d += st_current_data->rate_delta;
if (st.delta_d >= st_current_data->nominal_rate) { // Reached nominal rate.
st.delta_d = st_current_data->nominal_rate; // Set cruising velocity
st.ramp_type = RAMP_NOOP_CRUISE; // Set ramp flag to cruising
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2; // Re-initialize counter for next ramp.
}
} else { // Adjust velocity for deceleration.
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK; // Reload ramp counter
if (st.delta_d > st_current_data->rate_delta) {
st.delta_d -= st_current_data->rate_delta;
} else {
// Moving near zero feed rate. Gracefully slow down.
st.delta_d >>= 1; // Integer divide by 2 until complete. Also prevents overflow.
// TODO: Check for and handle feed hold exit? At this point, machine is stopped.
// - Set system flag to recompute plan and reset segment buffer.
// - Segment steps in buffer needs to be returned to planner correctly.
// busy = false;
// return;
}
}
// Finalize adjusted step rate. Ensure minimum.
if (st.delta_d < MINIMUM_STEP_RATE) { st.d_per_tick = MINIMUM_STEP_RATE; }
else { st.d_per_tick = st.delta_d; }
}
}
// Iterate inverse time counter. Triggers each Bresenham step event.
st.counter_d -= st.d_per_tick;
// Execute Bresenham step event, when it's time to do so.
if (st.counter_d < 0) {
st.counter_d += st_current_data->d_next; // Reload inverse time counter
st.out_bits = pl_current_block->direction_bits; // Reset out_bits and reload direction bits
st.execute_step = true;
// Execute step displacement profile by Bresenham line algorithm
st.counter_x -= pl_current_block->steps[X_AXIS];
if (st.counter_x < 0) {
st.out_bits |= (1<step_event_count;
// st.steps_x++;
if (st.out_bits & (1<steps[Y_AXIS];
if (st.counter_y < 0) {
st.out_bits |= (1<step_event_count;
// st.steps_y++;
if (st.out_bits & (1<steps[Z_AXIS];
if (st.counter_z < 0) {
st.out_bits |= (1<step_event_count;
// st.steps_z++;
if (st.out_bits & (1< 0) {
if (st.out_bits & (1< 0) {
if (st.out_bits & (1< 0) {
if (st.out_bits & (1<flag & ST_END_OF_BLOCK) {
plan_discard_current_block();
st.load_flag = LOAD_BLOCK;
} else {
st.load_flag = LOAD_SEGMENT;
}
// Discard current segment
segment_buffer_tail = next_block_index( segment_buffer_tail );
}
st.out_bits ^= settings.invert_mask; // Apply step port invert mask
}
busy = false;
// SPINDLE_ENABLE_PORT ^= 1<step_events_remaining);
// st.ramp_type = RAMP_ACCEL;
// st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2;
// st.delta_d = 0;
// sys.state = STATE_QUEUED;
// } else {
// sys.state = STATE_IDLE;
// }
sys.state = STATE_IDLE;
}
/* Prepares step segment buffer. Continuously called from main program.
NOTE: There doesn't seem to be a great way to figure out how many steps occur within
a set number of ISR ticks. Numerical round-off and CPU overhead always seems to be a
critical problem. So, either numerical round-off checks could be made to account for
them, while CPU overhead could be minimized in some way, or we can flip the algorithm
around to have the stepper algorithm track number of steps over an indeterminant amount
of time instead.
In other words, we use the planner velocity floating point data to get an estimate of
the number of steps we want to execute. We then back out the approximate velocity for
the planner to use, which should be much more robust to round-off error. The main problem
now is that we are loading the stepper algorithm to handle acceleration now, rather than
pre-calculating with the main program. This approach does make sense in the way that
planner velocities and stepper profiles can be traced more accurately.
Which is better? Very hard to tell. The time-based algorithm would be able to handle
Bresenham step adaptive-resolution much easier and cleaner. Whereas, the step-based would
require some additional math in the stepper algorithm to adjust on the fly, plus adaptation
would occur in a non-deterministic manner.
I suppose it wouldn't hurt to build both to see what's better. Just a lot more work.
TODO: Need to describe the importance of continuations of step pulses between ramp states
and planner blocks. This has to do with Alden's problem with step "phase". The things I've
been doing here limit this phase issue by truncating some of the ramp timing for certain
events like deceleration initialization and end of block.
*/
// !!! Need to make sure when a single partially completed block can be re-computed here with
// new deceleration point and the segment manager begins accelerating again immediately.
void st_prep_buffer()
{
while (segment_buffer_tail != segment_next_head) { // Check if we need to fill the buffer.
st_segment_t *prep_segment = &segment_buffer[segment_buffer_head];
prep_segment->flag = 0;
// Determine if we need to load a new planner block.
if (pl_prep_block == NULL) {
pl_prep_block = plan_get_block_by_index(pl_prep_index); // Query planner for a queued block
if (pl_prep_block == NULL) { return; } // No planner blocks. Exit.
// Check if the planner has re-computed this block mid-execution. If so, push the old segment block
// data. Otherwise, prepare a new segment block data for the new planner block.
if (pl_partial_block_flag) {
// Prepare new shared segment block data and copy the relevant last segment block data.
st_data_t *last_st_prep_data;
last_st_prep_data = &segment_data[st_data_prep_index];
st_data_prep_index = next_block_index(st_data_prep_index);
st_prep_data = &segment_data[st_data_prep_index];
st_prep_data->step_events_remaining = last_st_prep_data->step_events_remaining;
st_prep_data->rate_delta = last_st_prep_data->rate_delta;
st_prep_data->d_next = last_st_prep_data->d_next;
st_prep_data->nominal_rate = last_st_prep_data->nominal_rate; // TODO: Recompute with feedrate overrides.
st_prep_data->mm_per_step = last_st_prep_data->mm_per_step;
prep_segment->flag |= ST_ACCEL;
pl_partial_block_flag = false; // Reset flag
// TODO: If the planner updates this block, particularly from a deceleration to an acceleration,
// we must reload the initial rate data, such that the velocity profile is re-constructed correctly.
// The stepper algorithm must be flagged to adjust the acceleration counters.
} else {
// Prepare commonly shared planner block data for the ensuing segment buffer moves ad-hoc, since
// the planner buffer can dynamically change the velocity profile data as blocks are added.
st_data_prep_index = next_block_index(st_data_prep_index);
st_prep_data = &segment_data[st_data_prep_index];
// Initialize Bresenham variables
st_prep_data->step_events_remaining = pl_prep_block->step_event_count;
// Convert planner block velocity profile data to stepper rate and step distance data.
st_prep_data->nominal_rate = ceil(sqrt(pl_prep_block->nominal_speed_sqr)*(INV_TIME_MULTIPLIER/(60.0*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
st_prep_data->rate_delta = ceil(pl_prep_block->acceleration*
((INV_TIME_MULTIPLIER/(60.0*60.0))/(ISR_TICKS_PER_SECOND*ACCELERATION_TICKS_PER_SECOND))); // (mult*mm/isr_tic/accel_tic)
st_prep_data->d_next = ceil((pl_prep_block->millimeters*INV_TIME_MULTIPLIER)/pl_prep_block->step_event_count); // (mult*mm/step)
// TODO: Check if we really need to store this.
st_prep_data->mm_per_step = pl_prep_block->millimeters/pl_prep_block->step_event_count;
}
// Convert planner entry speed to stepper initial rate.
st_prep_data->initial_rate = ceil(sqrt(pl_prep_block->entry_speed_sqr)*(INV_TIME_MULTIPLIER/(60.0*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
// TODO: Nominal rate changes with feedrate override.
// st_prep_data->nominal_rate = ceil(sqrt(pl_prep_block->nominal_speed_sqr)*(INV_TIME_MULTIPLIER/(60.0*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
// Calculate the planner block velocity profile type and determine deceleration point.
float mm_decelerate_after = plan_calculate_velocity_profile(pl_prep_index);
st_prep_data->decelerate_after = ceil( mm_decelerate_after/st_prep_data->mm_per_step );
}
/*
TODO: Need to check for a planner flag to indicate a change to this planner block.
If so, need to check for a change in acceleration state, from deceleration to acceleration,
to reset the stepper ramp counters and the initial_rate data to trace the new
ac/de-celeration profile correctly.
No change conditions:
- From nominal speed to acceleration from feedrate override
- From nominal speed to new deceleration.
- From acceleration to new deceleration point later or cruising point.
- From acceleration to immediate deceleration? Can happen during feedrate override
and slowing down, but likely ok by enforcing the normal ramp counter protocol.
Change conditions:
- From deceleration to acceleration, i.e. common with jogging when new blocks are added.
*/
prep_segment->st_data_index = st_data_prep_index;
// TODO: How do you cheaply compute n_step without a sqrt()? Could be performed as 'bins'.
// The basic equation is: s = u*t + 0.5*a*t^2
// For the most part, we can store the acceleration portion in the st_data buffer and all
// we would need to do is track the current approximate speed per loop with: v = u + a*t
// Each loop would require 3 multiplication and 2 additions, since most of the variables
// are constants and would get compiled out.
//!!! Doesn't work as is. Requires last_velocity and acceleration in terms of steps, not mm.
// prep_segment->n_step = ceil(last_velocity*TIME_PER_SEGMENT/mm_per_step);
// if (st_prep_data->decelerate_after > 0) {
// prep_segment->n_step += ceil(pl_prep_block->acceleration*(0.5*TIME_PER_SEGMENT*TIME_PER_SEGMENT/(60*60))/mm_per_step);
// } else {
// prep_segment->n_step -= ceil(pl_prep_block->acceleration*(0.5*TIME_PER_SEGMENT*TIME_PER_SEGMENT/(60*60))/mm_per_step);
// }
prep_segment->n_step = 15; //floor( (exit_speed*approx_time)/mm_per_step );
// prep_segment->n_step = max(prep_segment->n_step,MINIMUM_STEPS_PER_BLOCK); // Ensure it moves for very slow motions?
// prep_segment->n_step = min(prep_segment->n_step,MAXIMUM_STEPS_PER_BLOCK); // Prevent unsigned int8 overflow.
// Check if n_step exceeds steps remaining in planner block. If so, truncate.
if (prep_segment->n_step > st_prep_data->step_events_remaining) {
prep_segment->n_step = st_prep_data->step_events_remaining;
// Don't need to compute last velocity, since it will be refreshed with a new block.
}
// Check if n_step exceeds decelerate point in block. Need to perform this so that the
// ramp counters are reset correctly in the stepper algorithm. Can be 1 step, but should
// be OK since it is likely moving at a fast rate already.
if (st_prep_data->decelerate_after > 0) {
if (prep_segment->n_step > st_prep_data->decelerate_after) {
prep_segment->n_step = st_prep_data->decelerate_after;
}
// !!! Doesn't work. Remove if not using.
// if (last_velocity < last_nominal_v) {
// // !!! Doesn't work since distance changes and gets truncated.
// last_velocity += pl_prep_block->acceleration*(TIME_PER_SEGMENT/(60*60)); // In acceleration ramp.
// if {last_velocity > last_nominal_v) { last_velocity = last_nominal_v; } // Set to cruising.
// }
// } else { // In deceleration ramp
// last_velocity -= pl_prep_block->acceleration*(TIME_PER_SEGMENT/(60*60));
} else {
if (st_prep_data->decelerate_after == 0) { prep_segment->flag |= ST_DECEL; }
}
st_prep_data->decelerate_after -= prep_segment->n_step;
// Update stepper block variables.
st_prep_data->step_events_remaining -= prep_segment->n_step;
if ( st_prep_data->step_events_remaining == 0 ) {
prep_segment->flag |= ST_END_OF_BLOCK;
// Move planner pointer to next block and flag to load a new block for the next segment.
pl_prep_index = next_block_pl_index(pl_prep_index);
pl_prep_block = NULL;
}
// New step segment completed. Increment segment buffer indices.
segment_buffer_head = segment_next_head;
segment_next_head = next_block_index(segment_buffer_head);
}
}
uint8_t st_get_prep_block_index()
{
// Returns only the index but doesn't state if the block has been partially executed. How do we simply check for this?
return(pl_prep_index);
}
void st_fetch_partial_block_parameters(uint8_t block_index, float *millimeters_remaining, uint8_t *is_decelerating)
{
// if called, can we assume that this always changes and needs to be updated? if so, then
// we can perform all of the segment buffer setup tasks here to make sure the next time
// the segments are loaded, the st_data buffer is updated correctly.
// !!! Make sure that this is always pointing to the correct st_prep_data block.
// When a mid-block acceleration occurs, we have to make sure the ramp counters are updated
// correctly, much in the same fashion as the deceleration counters. Need to think about this
// make sure this is right, but i'm pretty sure it is.
// TODO: NULL means that the segment buffer has just completed a planner block. Clean up!
if (pl_prep_block != NULL) {
*millimeters_remaining = st_prep_data->step_events_remaining*st_prep_data->mm_per_step;
if (st_prep_data->decelerate_after > 0) { *is_decelerating = false; }
else { *is_decelerating = true; }
// Flag for new prep_block when st_prep_buffer() is called after the planner recomputes.
pl_partial_block_flag = true;
pl_prep_block = NULL;
}
return;
}