/* motion_control.c - cartesian robot controller. Part of Grbl Copyright (c) 2009 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm' and the lecture 'Circle Drawing Algorithms' by Leonard McMillan. http://en.wikipedia.org/wiki/Midpoint_circle_algorithm http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html */ #include #include "config.h" #include "motion_control.h" #include #include #include #include "nuts_bolts.h" #include "stepper.h" #include "serial_protocol.h" #include "wiring_serial.h" #define ONE_MINUTE_OF_MICROSECONDS 60000000.0 // Parameters when mode is MC_MODE_ARC struct LinearMotionParameters { int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1) uint16_t feed_rate; int32_t target[3], // The target position in absolute steps step_count[3], // Absolute steps of travel along each axis counter[3], // A counter used in the bresenham algorithm for line plotting maximum_steps; // The larges absolute step-count of any axis }; struct ArcMotionParameters { int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1) int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise int32_t x, y, target_x, target_y; // current position and target position in the // local coordinate system of the arc-generator where [0,0] is the // center of the arc. int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2), // x2 is always 2*x, y2 is always 2*y uint8_t axis_x, axis_y; // maps the arc axes to stepper axes int32_t target[3]; // The target position in absolute steps int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0 int incomplete; // True if the arc has not reached its target yet }; /* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to read, but lets us initialize the state of the system by just clearing a single, contigous block of memory. By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM. */ struct MotionControlState { int8_t mode; // The current operation mode int32_t position[3]; // The current position of the tool in absolute steps int32_t pace; // Microseconds between each update in the current mode uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction union { struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR struct ArcMotionParameters arc; // variables used in MC_MODE_ARC uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL }; }; struct MotionControlState mc; void set_stepper_directions(int8_t *direction); inline void step_steppers(uint8_t *enabled); inline void step_axis(uint8_t axis); void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate); void mc_init() { // Initialize state variables memset(&mc, 0, sizeof(mc)); } void mc_dwell(uint32_t milliseconds) { mc.mode = MC_MODE_DWELL; mc.dwell_milliseconds = milliseconds; } // Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement. void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate) { prepare_linear_motion(trunc(x*X_STEPS_PER_MM), trunc(y*Y_STEPS_PER_MM), trunc(z*Z_STEPS_PER_MM), feed_rate, invert_feed_rate); } // Same as mc_linear_motion but accepts target in absolute step coordinates void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate) { memset(&mc.linear, 0, sizeof(mc.arc)); mc.linear.target[X_AXIS] = x; mc.linear.target[Y_AXIS] = y; mc.linear.target[Z_AXIS] = z; mc.mode = MC_MODE_LINEAR; uint8_t axis; // loop variable // Determine direction and travel magnitude for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { mc.linear.step_count[axis] = abs(mc.linear.target[axis] - mc.position[axis]); mc.linear.direction[axis] = signof(mc.linear.target[axis] - mc.position[axis]); } // Find the magnitude of the axis with the longest travel mc.linear.maximum_steps = max(mc.linear.step_count[Z_AXIS], max(mc.linear.step_count[X_AXIS], mc.linear.step_count[Y_AXIS])); if(mc.linear.maximum_steps == 0) { return; } // Nothing to do? if ((mc.linear.maximum_steps) == 0) { mc.mode = MC_MODE_AT_REST; return; } // Set up a neat counter for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { mc.linear.counter[axis] = -mc.linear.maximum_steps/2; } // Set our direction pins set_stepper_directions(mc.linear.direction); // Calculate the microseconds we need to wait between each step to achieve the desired feed rate if (invert_feed_rate) { mc.pace = (feed_rate*1000000)/mc.linear.maximum_steps; } else { // Ask old Phytagoras to estimate how many mm our next move is going to take us: double millimeters_to_travel = sqrt(pow(X_STEPS_PER_MM*mc.linear.step_count[X_AXIS],2) + pow(Y_STEPS_PER_MM*mc.linear.step_count[Y_AXIS],2) + pow(Z_STEPS_PER_MM*mc.linear.step_count[Z_AXIS],2)); // Calculate the microseconds between steps that we should wait in order to travel the // designated amount of millimeters in the amount of steps we are going to generate mc.pace = ((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / mc.linear.maximum_steps; } } void execute_linear_motion() { // Flags to keep track of which axes to step uint8_t step[3]; uint8_t axis; // loop variable while(mc.mode) { // Trace the line clear_vector(step); for(axis = X_AXIS; axis <= Z_AXIS; axis++) { if (mc.linear.target[axis] != mc.position[axis]) { mc.linear.counter[axis] += mc.linear.step_count[axis]; if (mc.linear.counter[axis] > 0) { step[axis] = true; mc.linear.counter[axis] -= mc.linear.maximum_steps; mc.position[axis] += mc.linear.direction[axis]; } } } if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) { step_steppers(step); } else { mc.mode = MC_MODE_AT_REST; } } } // Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // circle in millimeters. axis_1 and axis_2 selects the plane in tool space. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate) { memset(&mc.arc, 0, sizeof(mc.arc)); uint32_t radius_steps = round(radius*X_STEPS_PER_MM); if(radius_steps == 0) { return; } mc.mode = MC_MODE_ARC; // Determine angular direction (+1 = clockwise, -1 = counterclockwise) mc.arc.angular_direction = signof(angular_travel); // Calculate the initial position and target position in the local coordinate system of the arc mc.arc.x = round(sin(theta)*radius_steps); mc.arc.y = round(cos(theta)*radius_steps); mc.arc.target_x = trunc(sin(theta+angular_travel)*radius_steps); mc.arc.target_y = trunc(cos(theta+angular_travel)*radius_steps); // Precalculate these values to optimize target detection mc.arc.target_direction_x = signof(mc.arc.target_x)*mc.arc.angular_direction; mc.arc.target_direction_y = signof(mc.arc.target_y)*mc.arc.angular_direction; // The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error // <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we // are exactly on top of the arc. mc.arc.error = mc.arc.x*mc.arc.x + mc.arc.y*mc.arc.y - radius_steps*radius_steps; // Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications // by keeping track of the doubles of the arc coordinates at all times. mc.arc.x2 = 2*mc.arc.x; mc.arc.y2 = 2*mc.arc.y; // Set up a vector with the steppers we are going to use tracing the plane of this arc mc.arc.plane_steppers[axis_1] = 1; mc.arc.plane_steppers[axis_2] = 1; // And map the local coordinate system of the arc onto the tool axes of the selected plane mc.arc.axis_x = axis_1; mc.arc.axis_y = axis_2; // The amount of steppings performed while tracing a full circle is equal to the sum of sides in a // square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a full circle: uint32_t steps_in_half_circle = round(radius_steps * 4 * (1/sqrt(2))); // We then calculate the millimeters of travel along the circumference of that same full circle double millimeters_half_circumference = radius*M_PI; // Then we calculate the microseconds between each step as if we will trace the full circle. // It doesn't matter what fraction of the circle we are actuallyt going to trace. The pace is the same. mc.pace = ((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle; mc.arc.incomplete = true; } #define check_arc_target \ if ((mc.arc.x * mc.arc.target_direction_y >= \ mc.arc.target_x * mc.arc.target_direction_y) && \ (mc.arc.y * mc.arc.target_direction_x <= \ mc.arc.target_y * mc.arc.target_direction_x)) \ { if ((signof(mc.arc.x) == signof(mc.arc.target_x)) && (signof(mc.arc.y) == signof(mc.arc.target_y))) \ { mc.arc.incomplete = false; } } // Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy void step_arc_along_x(int8_t dx, int8_t dy) { uint32_t diagonal_error; mc.arc.x+=dx; mc.arc.error += 1+mc.arc.x2*dx; mc.arc.x2 += 2*dx; diagonal_error = mc.arc.error + 1 + mc.arc.y2*dy; if(abs(mc.arc.error) >= abs(diagonal_error)) { mc.arc.y += dy; mc.arc.y2 += 2*dy; mc.arc.error = diagonal_error; step_steppers(mc.arc.plane_steppers); // step diagonal } else { step_axis(mc.arc.axis_x); // step straight } check_arc_target; } // Internal method used by execute_arc to trace vertically in the general direction provided by dx and dy void step_arc_along_y(int8_t dx, int8_t dy) { uint32_t diagonal_error; mc.arc.y+=dy; mc.arc.error += 1+mc.arc.y2*dy; mc.arc.y2 += 2*dy; diagonal_error = mc.arc.error + 1 + mc.arc.x2*dx; if(abs(mc.arc.error) >= abs(diagonal_error)) { mc.arc.x += dx; mc.arc.x2 += 2*dx; mc.arc.error = diagonal_error; step_steppers(mc.arc.plane_steppers); // step diagonal } else { step_axis(mc.arc.axis_y); // step straight } check_arc_target; } // Will trace the configured arc until the target is reached. void execute_arc() { uint32_t start_x = mc.arc.x; uint32_t start_y = mc.arc.y; int dx, dy; // Trace directions // mc.mode is set to 0 (MC_MODE_AT_REST) when target is reached while(mc.arc.incomplete) { dx = (mc.arc.y!=0) ? signof(mc.arc.y) * mc.arc.angular_direction : -signof(mc.arc.x); dy = (mc.arc.x!=0) ? -signof(mc.arc.x) * mc.arc.angular_direction : -signof(mc.arc.y); // Take dx and dy which are local to the arc being generated and map them on to the // selected tool-space-axes for the current arc. mc.arc.direction[mc.arc.axis_x] = dx; mc.arc.direction[mc.arc.axis_y] = dy; set_stepper_directions(mc.arc.direction); if (abs(mc.arc.x)>(7-X_DIRECTION_BIT)) | ((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) | ((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT))); } // Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one // stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to // 1, and the rest to 0. inline void step_steppers(uint8_t *enabled) { st_buffer_step(mc.direction_bits | (enabled[X_AXIS]<