/* protocol.c - the serial protocol master control unit Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2011-2013 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include #include #include "protocol.h" #include "gcode.h" #include "serial.h" #include "print.h" #include "settings.h" #include "config.h" #include "nuts_bolts.h" #include "stepper.h" #include "report.h" #include "motion_control.h" static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated. static uint8_t char_counter; // Last character counter in line variable. static uint8_t iscomment; // Comment/block delete flag for processor to ignore comment characters. static void protocol_reset_line_buffer() { char_counter = 0; iscomment = false; } void protocol_init() { protocol_reset_line_buffer(); // Reset line input report_init_message(); // Welcome message PINOUT_DDR &= ~(PINOUT_MASK); // Set as input pins PINOUT_PORT |= PINOUT_MASK; // Enable internal pull-up resistors. Normal high operation. PINOUT_PCMSK |= PINOUT_MASK; // Enable specific pins of the Pin Change Interrupt PCICR |= (1 << PINOUT_INT); // Enable Pin Change Interrupt } // Executes user startup script, if stored. void protocol_execute_startup() { uint8_t n; for (n=0; n < N_STARTUP_LINE; n++) { if (!(settings_read_startup_line(n, line))) { report_status_message(STATUS_SETTING_READ_FAIL); } else { if (line[0] != 0) { printString(line); // Echo startup line to indicate execution. report_status_message(gc_execute_line(line)); } } } } // Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets // only the runtime command execute variable to have the main program execute these when // its ready. This works exactly like the character-based runtime commands when picked off // directly from the incoming serial data stream. ISR(PINOUT_INT_vect) { // Enter only if any pinout pin is actively low. if ((PINOUT_PIN & PINOUT_MASK) ^ PINOUT_MASK) { if (bit_isfalse(PINOUT_PIN,bit(PIN_RESET))) { mc_reset(); } else if (bit_isfalse(PINOUT_PIN,bit(PIN_FEED_HOLD))) { sys.execute |= EXEC_FEED_HOLD; } else if (bit_isfalse(PINOUT_PIN,bit(PIN_CYCLE_START))) { sys.execute |= EXEC_CYCLE_START; } } } // Executes run-time commands, when required. This is called from various check points in the main // program, primarily where there may be a while loop waiting for a buffer to clear space or any // point where the execution time from the last check point may be more than a fraction of a second. // This is a way to execute runtime commands asynchronously (aka multitasking) with grbl's g-code // parsing and planning functions. This function also serves as an interface for the interrupts to // set the system runtime flags, where only the main program handles them, removing the need to // define more computationally-expensive volatile variables. This also provides a controlled way to // execute certain tasks without having two or more instances of the same task, such as the planner // recalculating the buffer upon a feedhold or override. // NOTE: The sys.execute variable flags are set by any process, step or serial interrupts, pinouts, // limit switches, or the main program. void protocol_execute_runtime() { // Reload step segment buffer st_prep_buffer(); if (sys.execute) { // Enter only if any bit flag is true uint8_t rt_exec = sys.execute; // Avoid calling volatile multiple times // System alarm. Everything has shutdown by something that has gone severely wrong. Report // the source of the error to the user. If critical, Grbl disables by entering an infinite // loop until system reset/abort. if (rt_exec & (EXEC_ALARM | EXEC_CRIT_EVENT)) { sys.state = STATE_ALARM; // Set system alarm state // Critical event. Only hard/soft limit errors currently qualify. if (rt_exec & EXEC_CRIT_EVENT) { report_alarm_message(ALARM_LIMIT_ERROR); report_feedback_message(MESSAGE_CRITICAL_EVENT); bit_false(sys.execute,EXEC_RESET); // Disable any existing reset do { // Nothing. Block EVERYTHING until user issues reset or power cycles. Hard limits // typically occur while unattended or not paying attention. Gives the user time // to do what is needed before resetting, like killing the incoming stream. The // same could be said about soft limits. While the position is not lost, the incoming // stream could be still engaged and cause a serious crash if it continues afterwards. } while (bit_isfalse(sys.execute,EXEC_RESET)); // Standard alarm event. Only abort during motion qualifies. } else { // Runtime abort command issued during a cycle, feed hold, or homing cycle. Message the // user that position may have been lost and set alarm state to enable the alarm lockout // to indicate the possible severity of the problem. report_alarm_message(ALARM_ABORT_CYCLE); } bit_false(sys.execute,(EXEC_ALARM | EXEC_CRIT_EVENT)); } // Execute system abort. if (rt_exec & EXEC_RESET) { sys.abort = true; // Only place this is set true. return; // Nothing else to do but exit. } // Execute and serial print status if (rt_exec & EXEC_STATUS_REPORT) { report_realtime_status(); bit_false(sys.execute,EXEC_STATUS_REPORT); } // Initiate stepper feed hold if (rt_exec & EXEC_FEED_HOLD) { // !!! During a cycle, the segment buffer has just been reloaded and full. So the math involved // with the feed hold should be fine for most, if not all, operational scenarios. st_feed_hold(); // Initiate feed hold. bit_false(sys.execute,EXEC_FEED_HOLD); } // Reinitializes the stepper module running state and, if a feed hold, re-plans the buffer. // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. if (rt_exec & EXEC_CYCLE_STOP) { st_cycle_reinitialize(); bit_false(sys.execute,EXEC_CYCLE_STOP); } if (rt_exec & EXEC_CYCLE_START) { st_cycle_start(); // Issue cycle start command to stepper subsystem if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) { sys.auto_start = true; // Re-enable auto start after feed hold. } bit_false(sys.execute,EXEC_CYCLE_START); } } // Overrides flag byte (sys.override) and execution should be installed here, since they // are runtime and require a direct and controlled interface to the main stepper program. } // Directs and executes one line of formatted input from protocol_process. While mostly // incoming streaming g-code blocks, this also executes Grbl internal commands, such as // settings, initiating the homing cycle, and toggling switch states. This differs from // the runtime command module by being susceptible to when Grbl is ready to execute the // next line during a cycle, so for switches like block delete, the switch only effects // the lines that are processed afterward, not necessarily real-time during a cycle, // since there are motions already stored in the buffer. However, this 'lag' should not // be an issue, since these commands are not typically used during a cycle. uint8_t protocol_execute_line(char *line) { // Grbl internal command and parameter lines are of the form '$4=374.3' or '$' for help if(line[0] == '$') { uint8_t char_counter = 1; uint8_t helper_var = 0; // Helper variable float parameter, value; switch( line[char_counter] ) { case 0 : report_grbl_help(); break; case '$' : // Prints Grbl settings if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); } else { report_grbl_settings(); } break; case '#' : // Print gcode parameters if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); } else { report_gcode_parameters(); } break; case 'G' : // Prints gcode parser state if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); } else { report_gcode_modes(); } break; case 'C' : // Set check g-code mode if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); } // Perform reset when toggling off. Check g-code mode should only work if Grbl // is idle and ready, regardless of alarm locks. This is mainly to keep things // simple and consistent. if ( sys.state == STATE_CHECK_MODE ) { mc_reset(); report_feedback_message(MESSAGE_DISABLED); } else { if (sys.state) { return(STATUS_IDLE_ERROR); } sys.state = STATE_CHECK_MODE; report_feedback_message(MESSAGE_ENABLED); } break; case 'X' : // Disable alarm lock if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); } if (sys.state == STATE_ALARM) { report_feedback_message(MESSAGE_ALARM_UNLOCK); sys.state = STATE_IDLE; // Don't run startup script. Prevents stored moves in startup from causing accidents. } break; case 'H' : // Perform homing cycle if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { // Only perform homing if Grbl is idle or lost. if ( sys.state==STATE_IDLE || sys.state==STATE_ALARM ) { mc_go_home(); if (!sys.abort) { protocol_execute_startup(); } // Execute startup scripts after successful homing. } else { return(STATUS_IDLE_ERROR); } } else { return(STATUS_SETTING_DISABLED); } break; // case 'J' : break; // Jogging methods // TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be // susceptible to other runtime commands except for e-stop. The jogging function is intended to // be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped // steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would // start motion and toggle off would initiate a deceleration to stop. One could 'feather' the // motion by repeatedly toggling to slow the motion to the desired location. Location data would // need to be updated real-time and supplied to the user through status queries. // More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are // handled by the planner. It would be possible for the jog subprogram to insert blocks into the // block buffer without having the planner plan them. It would need to manage de/ac-celerations // on its own carefully. This approach could be effective and possibly size/memory efficient. case 'N' : // Startup lines. if ( line[++char_counter] == 0 ) { // Print startup lines for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) { if (!(settings_read_startup_line(helper_var, line))) { report_status_message(STATUS_SETTING_READ_FAIL); } else { report_startup_line(helper_var,line); } } break; } else { // Store startup line helper_var = true; // Set helper_var to flag storing method. // No break. Continues into default: to read remaining command characters. } default : // Storing setting methods if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter++] != '=') { return(STATUS_UNSUPPORTED_STATEMENT); } if (helper_var) { // Store startup line // Prepare sending gcode block to gcode parser by shifting all characters helper_var = char_counter; // Set helper variable as counter to start of gcode block do { line[char_counter-helper_var] = line[char_counter]; } while (line[char_counter++] != 0); // Execute gcode block to ensure block is valid. helper_var = gc_execute_line(line); // Set helper_var to returned status code. if (helper_var) { return(helper_var); } else { helper_var = trunc(parameter); // Set helper_var to int value of parameter settings_store_startup_line(helper_var,line); } } else { // Store global setting. if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter] != 0) { return(STATUS_UNSUPPORTED_STATEMENT); } return(settings_store_global_setting(parameter, value)); } } return(STATUS_OK); // If '$' command makes it to here, then everything's ok. } else { return(gc_execute_line(line)); // Everything else is gcode } } // Process and report status one line of incoming serial data. Performs an initial filtering // by removing spaces and comments and capitalizing all letters. void protocol_process() { uint8_t c; while((c = serial_read()) != SERIAL_NO_DATA) { if ((c == '\n') || (c == '\r')) { // End of line reached // Runtime command check point before executing line. Prevent any furthur line executions. // NOTE: If there is no line, this function should quickly return to the main program when // the buffer empties of non-executable data. protocol_execute_runtime(); if (sys.abort) { return; } // Bail to main program upon system abort if (char_counter > 0) {// Line is complete. Then execute! line[char_counter] = 0; // Terminate string report_status_message(protocol_execute_line(line)); } else { // Empty or comment line. Skip block. report_status_message(STATUS_OK); // Send status message for syncing purposes. } protocol_reset_line_buffer(); } else { if (iscomment) { // Throw away all comment characters if (c == ')') { // End of comment. Resume line. iscomment = false; } } else { if (c <= ' ') { // Throw away whitepace and control characters } else if (c == '/') { // Block delete not supported. Ignore character. } else if (c == '(') { // Enable comments flag and ignore all characters until ')' or EOL. iscomment = true; } else if (char_counter >= LINE_BUFFER_SIZE-1) { // Detect line buffer overflow. Report error and reset line buffer. report_status_message(STATUS_OVERFLOW); protocol_reset_line_buffer(); } else if (c >= 'a' && c <= 'z') { // Upcase lowercase line[char_counter++] = c-'a'+'A'; } else { line[char_counter++] = c; } } } } }