/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2012-2013 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
#include
#include
#include
#include "stepper.h"
#include "settings.h"
#include "nuts_bolts.h"
#include "config.h"
#include "spindle_control.h"
#include "motion_control.h"
#include "planner.h"
#include "protocol.h"
#include "limits.h"
#include "report.h"
void limits_init()
{
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
#ifndef LIMIT_SWITCHES_ACTIVE_HIGH
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
#else // LIMIT_SWITCHES_ACTIVE_HIGH
LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down.
#endif // !LIMIT_SWITCHES_ACTIVE_HIGH
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
} else {
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable
PCICR &= ~(1 << LIMIT_INT);
}
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
// bouncing pin without a debouncing method.
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
// homing cycles and will not respond correctly. Upon user request or need, there may be a
// special pinout for an e-stop, but it is generally recommended to just directly connect
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
ISR(LIMIT_INT_vect)
{
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
// Moves all specified axes in same specified direction (positive=true, negative=false)
// and at the homing rate. Homing is a special motion case, where there is only an
// acceleration followed by abrupt asynchronous stops by each axes reaching their limit
// switch independently. Instead of shoehorning homing cycles into the main stepper
// algorithm and overcomplicate things, a stripped-down, lite version of the stepper
// algorithm is written here. This also lets users hack and tune this code freely for
// their own particular needs without affecting the rest of Grbl.
// NOTE: Only the abort runtime command can interrupt this process.
static void homing_cycle(uint8_t cycle_mask, bool approach, bool invert_pin, float homing_rate)
{
if (sys.execute & EXEC_RESET) { return; }
uint8_t limit_state;
#ifndef LIMIT_SWITCHES_ACTIVE_HIGH
invert_pin = !invert_pin;
#endif
// Compute target location for homing all axes. Homing axis lock will freeze non-cycle axes.
float target[N_AXIS];
target[X_AXIS] = settings.max_travel[X_AXIS];
if (target[X_AXIS] < settings.max_travel[Y_AXIS]) { target[X_AXIS] = settings.max_travel[Y_AXIS]; }
if (target[X_AXIS] < settings.max_travel[Z_AXIS]) { target[X_AXIS] = settings.max_travel[Z_AXIS]; }
target[X_AXIS] *= 2.0;
uint8_t pos_dir = settings.homing_dir_mask;
if (pos_dir >= 128) {
pos_dir = pos_dir - 128;
target[Z_AXIS] = target[X_AXIS];
}
else { target[Z_AXIS] = -target[X_AXIS]; }
if (!approach) { target[Z_AXIS] = target[Z_AXIS] * -1; }
if (pos_dir >= 64) {
pos_dir = pos_dir - 64;
target[Y_AXIS] = target[X_AXIS];
}
else { target[Y_AXIS] = -target[X_AXIS]; }
if (!approach) { target[Y_AXIS] = target[Y_AXIS] * -1; }
if (pos_dir >= 32) {
pos_dir = pos_dir -32;
target[X_AXIS] = target[X_AXIS];
}
else { target[X_AXIS] = -target[X_AXIS]; }
if (!approach) { target[X_AXIS] = target[X_AXIS] * -1; }
//if (pos_dir) { target[X_AXIS] = -target[X_AXIS]; }
//target[Y_AXIS] = target[X_AXIS];
//target[Z_AXIS] = target[X_AXIS];
homing_rate *= 1.7320; // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
// Setup homing axis locks based on cycle mask.
uint8_t axislock = (STEPPING_MASK & ~STEP_MASK);
if (bit_istrue(cycle_mask,bit(X_AXIS))) { axislock |= (1< 0) {
// Re-approach all switches to re-engage them.
homing_cycle(HOMING_LOCATE_CYCLE, true, false, settings.homing_feed_rate);
}
}
}
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
// and the workspace volume is in all negative space.
void limits_soft_check(float *target)
{
uint8_t idx;
for (idx=0; idx 0 || target[idx] < settings.max_travel[idx]) { // NOTE: max_travel is stored as negative
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
// workspace volume so just come to a controlled stop so position is not lost. When complete
// enter alarm mode.
if (sys.state == STATE_CYCLE) {
st_feed_hold();
while (sys.state == STATE_HOLD) {
protocol_execute_runtime();
if (sys.abort) { return; }
}
}
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
sys.execute |= EXEC_CRIT_EVENT; // Indicate soft limit critical event
protocol_execute_runtime(); // Execute to enter critical event loop and system abort
return;
}
}
}