/* motion_control.c - cartesian robot controller. Part of Grbl Copyright (c) 2009 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm' and the lecture 'Circle Drawing Algorithms' by Leonard McMillan. http://en.wikipedia.org/wiki/Midpoint_circle_algorithm http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html */ #include #include "config.h" #include "motion_control.h" #include #include #include #include "nuts_bolts.h" #include "stepper.h" #include "geometry.h" #include "wiring_serial.h" #define ONE_MINUTE_OF_MICROSECONDS 60000000.0 volatile int8_t mode; // The current operation mode int32_t position[3]; // The current position of the tool in absolute steps uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction void set_stepper_directions(int8_t *direction); inline void step_steppers(uint8_t bits); inline void step_axis(uint8_t axis); void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate); void mc_init() { mode = MC_MODE_AT_REST; clear_vector(position); } void mc_dwell(uint32_t milliseconds) { mode = MC_MODE_DWELL; st_synchronize(); _delay_ms(milliseconds); mode = MC_MODE_AT_REST; } // Calculate the microseconds between steps that we should wait in order to travel the // designated amount of millimeters in the amount of steps we are going to generate void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) { int32_t pace; if (invert) { pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps); } else { pace = round((ONE_MINUTE_OF_MICROSECONDS/X_STEPS_PER_MM)/feed_rate); } st_buffer_pace(pace); } // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in // 1/feed_rate minutes. void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate) { // Flags to keep track of which axes to step uint8_t step_bits; uint8_t axis; // loop variable int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1) int32_t target[3], // The target position in absolute steps step_count[3], // Absolute steps of travel along each axis counter[3], // A counter used in the bresenham algorithm for line plotting maximum_steps; // The larges absolute step-count of any axis // Setup --------------------------------------------------------------------------------------------------- target[X_AXIS] = x*X_STEPS_PER_MM; target[Y_AXIS] = y*Y_STEPS_PER_MM; target[Z_AXIS] = z*Z_STEPS_PER_MM; // Determine direction and travel magnitude for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { step_count[axis] = abs(target[axis] - position[axis]); direction[axis] = signof(target[axis] - position[axis]); } // Find the magnitude of the axis with the longest travel maximum_steps = max(step_count[Z_AXIS], max(step_count[X_AXIS], step_count[Y_AXIS])); // Nothing to do? if (maximum_steps == 0) { return; } // Set up a neat counter for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { counter[axis] = -maximum_steps/2; } // Set our direction pins set_stepper_directions(direction); // Ask old Phytagoras to estimate how many mm our next move is going to take us double millimeters_of_travel = sqrt(square(X_STEPS_PER_MM*step_count[X_AXIS]) + square(Y_STEPS_PER_MM*step_count[Y_AXIS]) + square(Z_STEPS_PER_MM*step_count[Z_AXIS])); // And set the step pace compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate); // Execution ----------------------------------------------------------------------------------------------- mode = MC_MODE_LINEAR; do { // Trace the line step_bits = 0; for(axis = X_AXIS; axis <= Z_AXIS; axis++) { if (target[axis] != position[axis]) { counter[axis] += step_count[axis]; if (counter[axis] > 0) { step_bits |= st_bit_for_stepper(axis); counter[axis] -= maximum_steps; position[axis] += direction[axis]; } } } if(step_bits) { step_steppers(step_bits); } } while (step_bits); mode = MC_MODE_AT_REST; } // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining // axis in axis_l which will be the axis for linear travel if you are tracing a helical motion. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, int axis_linear, double feed_rate, int invert_feed_rate) { uint32_t start_x, start_y; // The start position in the coordinate system local to the circle uint32_t diagonal_error; // A variable to keep track of varations in the error-value during // the tracing of the arc int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1) int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise int32_t x, y, target_x, target_y; // current position and target position in the // local coordinate system of the arc-generator where [0,0] is the // center of the arc. int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed int32_t error; // error is always == (x**2 + y**2 - radius**2), int dx, dy; // Trace directions // Setup arc interpolation -------------------------------------------------------------------------------- uint32_t radius_steps = round(radius*X_STEPS_PER_MM); if(radius_steps == 0) { return; } // Determine angular direction (+1 = clockwise, -1 = counterclockwise) angular_direction = signof(angular_travel); // Calculate the initial position and target position in the local coordinate system of the arc start_x = x = round(sin(theta)*radius_steps); start_y = y = round(cos(theta)*radius_steps); target_x = trunc(sin(theta+angular_travel)*radius_steps); target_y = trunc(cos(theta+angular_travel)*radius_steps); // Precalculate these values to optimize target detection target_direction_x = signof(target_x)*angular_direction; target_direction_y = signof(target_y)*angular_direction; // The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error // <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we // are exactly on top of the arc. error = x*x + y*y - radius_steps*radius_steps; // Estimate length of arc in steps ------------------------------------------------------------------------- /* To support helical motion we need to know in advance how many steppings the arc will need. The calculations are based on the fact that we trace the circle by offsetting a square. The circle has four "sides" or quadrants. For each quadrant we step mainly in one axis. The amount steps for one quarter of the circle (e.g. along the x axis with positive y) is equal to one side of a square inscribed in the circle we are tracing. Quadrants of the circle +---- 0 ----+ 0 - y is always positive and |x| < |y| | | 1 - x is always positive and |x| > |y| | | 2 - y is always negative and |x| < |y| 3 + 1 3 - x is always negative and |x| > |y| | | | | length of one side: 2*radius/sqrt(2) +---- 2 ----+ */ // Find the quadrants of the starting point and the target int start_quadrant = quadrant_of_the_circle(start_x, start_y); int target_quadrant = quadrant_of_the_circle(target_x, target_y); uint32_t arc_steps=0; // Will this whole arc take place within the same quadrant? if (start_quadrant == target_quadrant && (abs(angular_travel) <= (M_PI/2))) { if(quadrant_horizontal(start_quadrant)) { // a horizontal quadrant where x will be the primary direction arc_steps = abs(target_x-start_x); } else { // a vertical quadrant where y will be the primary direction arc_steps = abs(target_y-start_y); } } else { // the start and target points are in different quadrants // Lets estimate the amount of steps along half a quadrant uint32_t steps_in_half_quadrant = ceil(radius_steps/sqrt(2)); // Add the steps in the first partial quadrant arc_steps += steps_in_partial_quadrant(start_x, start_y, start_quadrant, angular_direction, steps_in_half_quadrant); // Count the number of full quadrants between the start and end quadrants uint8_t full_quadrants_traveled = full_quadrants_between(start_quadrant, target_quadrant, angular_direction); // Add steps for the full quadrants plus some stray steps for "corners" arc_steps += full_quadrants_traveled*(steps_in_half_quadrant*2+1); // Add the steps in the final partial quadrant. By inverting the angular direction we get the correct number for // the target quadrant which steps through the opposite part of the quadrant with respect to the start quadrant. arc_steps += steps_in_partial_quadrant(target_x, target_y, target_quadrant, -angular_direction, steps_in_half_quadrant); } // Set up the linear interpolation of the "depth" axis ----------------------------------------------------- int32_t linear_steps = abs(st_millimeters_to_steps(linear_travel, axis_linear)); int linear_direction = signof(linear_travel); // The number of steppings needed to trace this motion is equal to the motion that require the maximum // amount of steps: the arc or the line: int32_t maximum_steps = max(linear_steps, arc_steps); // Initialize the counters to do 2D linear bresenham as if the motion along the arc itself was a single axis // of the line, while the linear "depth" axis was the other. int32_t linear_counter = -maximum_steps/2; int32_t arc_counter = -maximum_steps/2; // Calculate feed rate ------------------------------------------------------------------------------------- // We then calculate the millimeters of helical travel double millimeters_of_travel = hypot(angular_travel*radius, abs(linear_travel)); // Then we calculate the microseconds between each step as if we will trace the full circle. // It doesn't matter what fraction of the circle we are actually going to trace. The pace is the same. compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate); // Execution ----------------------------------------------------------------------------------------------- mode = MC_MODE_ARC; // Set the direction of the linear or "depth" axis, cause it will never change direction[axis_linear] = linear_direction; // Cache some stepper bit-masks to speed up the interpolation code uint8_t axis_1_bit = st_bit_for_stepper(axis_1); uint8_t axis_2_bit = st_bit_for_stepper(axis_2); uint8_t axis_linear_bit = st_bit_for_stepper(axis_linear); uint8_t diagonal_bits = (axis_1_bit | axis_2_bit); uint8_t step_bits; while(mode) { // This loop sets the bits in the step_bits variable for each stepper it wants to step in this cycle. step_bits = 0; // The bresenham algorithm chooses when to travel in the depth axis and when to travel along the arc linear_counter += linear_steps; if (linear_counter > 0) { linear_counter -= maximum_steps; // Move one step in the depth direction: step_bits |= axis_linear_bit; } arc_counter += arc_steps; if (arc_counter > 0) { arc_counter -= maximum_steps; // Do one step of the arc: // Determine directions for each axis at this point in the arc dx = (y!=0) ? signof(y) * angular_direction : -signof(x); dy = (x!=0) ? -signof(x) * angular_direction : -signof(y); // Take dx and dy which are local to the arc being generated and map them on to the // selected tool-space-axes for the current arc. direction[axis_1] = dx; direction[axis_2] = dy; // Check which axis will be "major" for this stepping if (abs(x)= abs(diagonal_error)) { y += dy; error = diagonal_error; step_bits |= diagonal_bits; // step diagonal } else { step_bits |= axis_1_bit; // step straight } } else { // Y is major: Step arc vertically error += 1 + 2*y * dy; y+=dy; diagonal_error = error + 1 + 2*x * dx; if(abs(error) >= abs(diagonal_error)) { x += dx; error = diagonal_error; step_bits |= diagonal_bits; // step diagonal } else { step_bits |= axis_2_bit; // step straight } } } // Tell the steppers to do the stepping set_stepper_directions(direction); step_steppers(step_bits); // Check if target has been reached. Todo: Simplify/optimize/clarify if ((x * target_direction_y >= target_x * target_direction_y) && (y * target_direction_x <= target_y * target_direction_x)) { if ((signof(x) == signof(target_x)) && (signof(y) == signof(target_y))) { mode = MC_MODE_AT_REST; } } } // Update the tool position to the new actual position position[axis_1] += x-start_x; position[axis_2] += y-start_y; position[axis_2] += linear_steps*linear_direction; } void mc_go_home() { mode = MC_MODE_HOME; st_go_home(); st_synchronize(); clear_vector(position); // By definition this is location [0, 0, 0] mode = MC_MODE_AT_REST; } int mc_status() { return(mode); } // Set the direction bits for the stepper motors according to the provided vector. // direction is an array of three 8 bit integers representing the direction of // each motor. The values should be negative (reverse), 0 or positive (forward). void set_stepper_directions(int8_t *direction) { /* Sorry about this convoluted code! It uses the fact that bit 7 of each direction int is set when the direction == -1, but is 0 when direction is forward. This way we can generate the whole direction bit-mask without doing any comparisions or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry. */ direction_bits = ( ((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) | ((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) | ((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT))); } // Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one // stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to // 1, and the rest to 0. inline void step_steppers(uint8_t bits) { st_buffer_step(direction_bits | bits); } // Step only one motor inline void step_axis(uint8_t axis) { st_buffer_step(direction_bits | st_bit_for_stepper(axis)); }