/* motion_control.c - high level interface for issuing motion commands Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2011 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include #include "settings.h" #include "config.h" #include "motion_control.h" #include #include #include #include "nuts_bolts.h" #include "stepper.h" #include "planner.h" // Execute dwell in seconds. Maximum time delay is > 18 hours, more than enough for any application. void mc_dwell(double seconds) { uint16_t i = floor(seconds); st_synchronize(); _delay_ms(floor(1000*(seconds-i))); // Delay millisecond remainder while (i > 0) { _delay_ms(1000); // Delay one second i--; } } // Execute an arc in offset mode format. position == current xyz, target == target xyz, // offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is // the direction of helical travel, radius == circle radius, isclockwise boolean. Used // for vector transformation direction. // position, target, and offset are pointers to vectors from gcode.c #ifdef __AVR_ATmega328P__ // The arc is approximated by generating a huge number of tiny, linear segments. The length of each // segment is configured in settings.mm_per_arc_segment. void mc_arc(double *position, double *target, double *offset, uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, double feed_rate, uint8_t invert_feed_rate, double radius, uint8_t isclockwise) { // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc double center_axis0 = position[axis_0] + offset[axis_0]; double center_axis1 = position[axis_1] + offset[axis_1]; double linear_travel = target[axis_linear] - position[axis_linear]; double r_axis0 = -offset[axis_0]; // Radius vector from center to current location double r_axis1 = -offset[axis_1]; double rt_axis0 = target[axis_0] - center_axis0; double rt_axis1 = target[axis_1] - center_axis1; // CCW angle between position and target from circle center. Only one atan2() trig computation required. double angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); if (angular_travel < 0) { angular_travel += 2*M_PI; } if (isclockwise) { angular_travel -= 2*M_PI; } double millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); if (millimeters_of_travel == 0.0) { return; } uint16_t segments = floor(millimeters_of_travel/settings.mm_per_arc_segment); // Multiply inverse feed_rate to compensate for the fact that this movement is approximated // by a number of discrete segments. The inverse feed_rate should be correct for the sum of // all segments. if (invert_feed_rate) { feed_rate *= segments; } double theta_per_segment = angular_travel/segments; double linear_per_segment = linear_travel/segments; /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, and phi is the angle of rotation. Based on the solution approach by Jens Geisler. r_T = [cos(phi) -sin(phi); sin(phi) cos(phi] * r ; For arc generation, the center of the circle is the axis of rotation and the radius vector is defined from the circle center to the initial position. Each line segment is formed by successive vector rotations. This requires only two cos() and sin() computations to form the rotation matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since all double numbers are single precision on the Arduino. (True double precision will not have round off issues for CNC applications.) Single precision error can accumulate to be greater than tool precision in some cases. Therefore, arc path correction is implemented. Small angle approximation may be used to reduce computation overhead further. This approximation holds for everything, but very small circles and large mm_per_arc_segment values. In other words, theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an issue for CNC machines with the single precision Arduino calculations. This approximation also allows mc_arc to immediately insert a line segment into the planner without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. This is important when there are successive arc motions. */ // Vector rotation matrix values double cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation double sin_T = theta_per_segment; double arc_target[3]; double sin_Ti; double cos_Ti; double r_axisi; uint16_t i; int8_t count = 0; // Initialize the linear axis arc_target[axis_linear] = position[axis_linear]; for (i = 1; i