/* limits.c - code pertaining to limit-switches and performing the homing cycle Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2012 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include #include #include #include "stepper.h" #include "settings.h" #include "nuts_bolts.h" #include "config.h" #include "spindle_control.h" #include "motion_control.h" #include "planner.h" #include "protocol.h" #define MICROSECONDS_PER_ACCELERATION_TICK (1000000/ACCELERATION_TICKS_PER_SECOND) void limits_init() { LIMIT_DDR &= ~(LIMIT_MASK); // Input pin LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors for normal high } // Moves all specified axes in same specified direction (positive=true, negative=false) // and at the homing rate. Homing is a special motion case, where there is only an // acceleration followed by abrupt asynchronous stops by each axes reaching their limit // switch independently. Instead of shoehorning homing cycles into the main stepper // algorithm and overcomplicate things, a stripped-down, lite version of the stepper // algorithm is written here. This also lets users hack and tune this code freely for // their own particular needs without affecting the rest of Grbl. // NOTE: Only the abort runtime command can interrupt this process. static void homing_cycle(bool x_axis, bool y_axis, bool z_axis, int8_t pos_dir, float homing_rate) { // Determine governing axes with finest step resolution per distance for the Bresenham // algorithm. This solves the issue when homing multiple axes that have different // resolutions without exceeding system acceleration setting. It doesn't have to be // perfect since homing locates machine zero, but should create for a more consistent // and speedy homing routine. // NOTE: For each axes enabled, the following calculations assume they physically move // an equal distance over each time step until they hit a limit switch, aka dogleg. uint32_t steps[3]; clear_vector(steps); if (x_axis) { steps[X_AXIS] = lround(settings.steps_per_mm[X_AXIS]); } if (y_axis) { steps[Y_AXIS] = lround(settings.steps_per_mm[Y_AXIS]); } if (z_axis) { steps[Z_AXIS] = lround(settings.steps_per_mm[Z_AXIS]); } uint32_t step_event_count = max(steps[X_AXIS], max(steps[Y_AXIS], steps[Z_AXIS])); // To ensure global acceleration is not exceeded, reduce the governing axes nominal rate // by adjusting the actual axes distance traveled per step. This is the same procedure // used in the main planner to account for distance traveled when moving multiple axes. // NOTE: When axis acceleration independence is installed, this will be updated to move // all axes at their maximum acceleration and rate. float ds = step_event_count/sqrt(x_axis+y_axis+z_axis); // Compute the adjusted step rate change with each acceleration tick. (in step/min/acceleration_tick) uint32_t delta_rate = ceil( ds*settings.acceleration/(60*ACCELERATION_TICKS_PER_SECOND)); // Nominal and initial time increment per step. Nominal should always be greater then 3 // usec, since they are based on the same parameters as the main stepper routine. Initial // is based on the MINIMUM_STEPS_PER_MINUTE config. uint32_t dt_min = lround(1000000*60/(ds*homing_rate)); // Cruising (usec/step) uint32_t dt = 1000000*60/MINIMUM_STEPS_PER_MINUTE; // Initial (usec/step) // Determine default out_bits set. Direction fixed and step pin inverted uint8_t out_bits0 = DIRECTION_MASK; out_bits0 ^= settings.invert_mask; // Apply the global step and direction invert mask if (!pos_dir) { out_bits0 ^= DIRECTION_MASK; } // Invert bits, if negative dir. // Initialize stepping variables int32_t counter_x = -(step_event_count >> 1); // Bresenham counters int32_t counter_y = counter_x; int32_t counter_z = counter_x; uint32_t step_delay = dt-settings.pulse_microseconds; // Step delay after pulse uint32_t step_rate = 0; // Tracks step rate. Initialized from 0 rate. (in step/min) uint32_t trap_counter = MICROSECONDS_PER_ACCELERATION_TICK/2; // Acceleration trapezoid counter uint8_t out_bits; for(;;) { // Reset out bits. Both direction and step pins appropriately inverted and set. out_bits = out_bits0; // Set step pins by Bresenham line algorithm. If limit switch reached, disable and // flag for completion. if (x_axis) { counter_x += steps[X_AXIS]; if (counter_x > 0) { if (LIMIT_PIN & (1< 0) { if (LIMIT_PIN & (1< 0) { if (LIMIT_PIN & (1< dt_min) { // Unless cruising, check for time update. trap_counter += dt; // Track time passed since last update. if (trap_counter > MICROSECONDS_PER_ACCELERATION_TICK) { trap_counter -= MICROSECONDS_PER_ACCELERATION_TICK; step_rate += delta_rate; // Increment velocity dt = (1000000*60)/step_rate; // Compute new time increment if (dt < dt_min) {dt = dt_min;} // If target rate reached, cruise. step_delay = dt-settings.pulse_microseconds; } } } } static void approach_limit_switch(bool x, bool y, bool z) { homing_cycle(x, y, z, true, settings.default_seek_rate); } static void leave_limit_switch(bool x, bool y, bool z) { homing_cycle(x, y, z, false, settings.default_feed_rate); } void limits_go_home() { plan_synchronize(); // Empty all motions in buffer. // TODO: Need to come up a better way to manage and set limit switches. uint8_t original_limit_state = LIMIT_PIN; // Store the current limit switch state // Jog all axes toward home to engage their limit switches. approach_limit_switch(false, false, true); // First home the z axis approach_limit_switch(true, true, false); // Then home the x and y axis delay_ms(LIMIT_DEBOUNCE); // Delay to debounce signal before leaving limit switches // Xor previous and current limit switch state to determine which were high then but have become // low now. These are the actual installed limit switches. uint8_t limit_switches_present = (original_limit_state ^ LIMIT_PIN) & LIMIT_MASK; // Now carefully leave the limit switches leave_limit_switch( limit_switches_present & (1<