/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2012 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
#include
#include
#include
#include "stepper.h"
#include "settings.h"
#include "nuts_bolts.h"
#include "config.h"
#include "spindle_control.h"
#include "motion_control.h"
#include "planner.h"
#include "protocol.h"
#include "limits.h"
#define MICROSECONDS_PER_ACCELERATION_TICK (1000000/ACCELERATION_TICKS_PER_SECOND)
void limits_init()
{
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
}
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature.
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
// homing cycles and will not respond correctly. Upon user request or need, there may be a
// special pinout for an e-stop, but it is generally recommended to just directly connect
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
ISR(LIMIT_INT_vect)
{
// Only enter if the system alarm is not active.
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
// Kill all processes upon hard limit event.
if ((LIMIT_PIN & LIMIT_MASK) ^ LIMIT_MASK) {
st_go_idle(); // Immediately stop stepper motion
spindle_stop(); // Stop spindle
sys.auto_start = false; // Disable auto cycle start.
sys.execute |= EXEC_ALARM;
// TODO: When Grbl system status is installed, update here to indicate loss of position.
}
// else {
// TODO: When leaving a switch, this interrupt can be activated upon detecting a pin
// change to high. If so, need to start a countdown timer to check the pin again after
// a debounce period to not falsely re-engage the alarm.
}
}
// Moves all specified axes in same specified direction (positive=true, negative=false)
// and at the homing rate. Homing is a special motion case, where there is only an
// acceleration followed by abrupt asynchronous stops by each axes reaching their limit
// switch independently. Instead of shoehorning homing cycles into the main stepper
// algorithm and overcomplicate things, a stripped-down, lite version of the stepper
// algorithm is written here. This also lets users hack and tune this code freely for
// their own particular needs without affecting the rest of Grbl.
// NOTE: Only the abort runtime command can interrupt this process.
static void homing_cycle(bool x_axis, bool y_axis, bool z_axis, int8_t pos_dir,
bool invert_pin, float homing_rate)
{
// Determine governing axes with finest step resolution per distance for the Bresenham
// algorithm. This solves the issue when homing multiple axes that have different
// resolutions without exceeding system acceleration setting. It doesn't have to be
// perfect since homing locates machine zero, but should create for a more consistent
// and speedy homing routine.
// NOTE: For each axes enabled, the following calculations assume they physically move
// an equal distance over each time step until they hit a limit switch, aka dogleg.
uint32_t steps[3];
clear_vector(steps);
if (x_axis) { steps[X_AXIS] = lround(settings.steps_per_mm[X_AXIS]); }
if (y_axis) { steps[Y_AXIS] = lround(settings.steps_per_mm[Y_AXIS]); }
if (z_axis) { steps[Z_AXIS] = lround(settings.steps_per_mm[Z_AXIS]); }
uint32_t step_event_count = max(steps[X_AXIS], max(steps[Y_AXIS], steps[Z_AXIS]));
// To ensure global acceleration is not exceeded, reduce the governing axes nominal rate
// by adjusting the actual axes distance traveled per step. This is the same procedure
// used in the main planner to account for distance traveled when moving multiple axes.
// NOTE: When axis acceleration independence is installed, this will be updated to move
// all axes at their maximum acceleration and rate.
float ds = step_event_count/sqrt(x_axis+y_axis+z_axis);
// Compute the adjusted step rate change with each acceleration tick. (in step/min/acceleration_tick)
uint32_t delta_rate = ceil( ds*settings.acceleration/(60*ACCELERATION_TICKS_PER_SECOND));
// Nominal and initial time increment per step. Nominal should always be greater then 3
// usec, since they are based on the same parameters as the main stepper routine. Initial
// is based on the MINIMUM_STEPS_PER_MINUTE config. Since homing feed can be very slow,
// disable acceleration when rates are below MINIMUM_STEPS_PER_MINUTE.
uint32_t dt_min = lround(1000000*60/(ds*homing_rate)); // Cruising (usec/step)
uint32_t dt = 1000000*60/MINIMUM_STEPS_PER_MINUTE; // Initial (usec/step)
if (dt > dt_min) { dt = dt_min; } // Disable acceleration for very slow rates.
// Set default out_bits.
uint8_t out_bits0 = settings.invert_mask;
out_bits0 ^= (settings.homing_dir_mask & DIRECTION_MASK); // Apply homing direction settings
if (!pos_dir) { out_bits0 ^= DIRECTION_MASK; } // Invert bits, if negative dir.
// Initialize stepping variables
int32_t counter_x = -(step_event_count >> 1); // Bresenham counters
int32_t counter_y = counter_x;
int32_t counter_z = counter_x;
uint32_t step_delay = dt-settings.pulse_microseconds; // Step delay after pulse
uint32_t step_rate = 0; // Tracks step rate. Initialized from 0 rate. (in step/min)
uint32_t trap_counter = MICROSECONDS_PER_ACCELERATION_TICK/2; // Acceleration trapezoid counter
uint8_t out_bits;
uint8_t limit_state;
for(;;) {
// Reset out bits. Both direction and step pins appropriately inverted and set.
out_bits = out_bits0;
// Get limit pin state.
limit_state = LIMIT_PIN;
if (invert_pin) { limit_state ^= LIMIT_MASK; } // If leaving switch, invert to move.
// Set step pins by Bresenham line algorithm. If limit switch reached, disable and
// flag for completion.
if (x_axis) {
counter_x += steps[X_AXIS];
if (counter_x > 0) {
if (limit_state & (1< 0) {
if (limit_state & (1< 0) {
if (limit_state & (1< dt_min) { // Unless cruising, check for time update.
trap_counter += dt; // Track time passed since last update.
if (trap_counter > MICROSECONDS_PER_ACCELERATION_TICK) {
trap_counter -= MICROSECONDS_PER_ACCELERATION_TICK;
step_rate += delta_rate; // Increment velocity
dt = (1000000*60)/step_rate; // Compute new time increment
if (dt < dt_min) {dt = dt_min;} // If target rate reached, cruise.
step_delay = dt-settings.pulse_microseconds;
}
}
}
}
void limits_go_home()
{
STEPPERS_DISABLE_PORT &= ~(1< 0) {
// Re-approach all switches to re-engage them.
homing_cycle(true, true, true, true, false, settings.homing_feed_rate);
delay_ms(settings.homing_debounce_delay);
}
}
st_go_idle(); // Call main stepper shutdown routine.
}