require "pp" # A tiny ruby script to design and test the implementation of the arc-support class Numeric # -1 if the number < 0, 1 if number >= 0 def sign return 0 if self == 0 (self < 0) ? -1 : 1 end end class CircleTest include Math def init @pixels = [] @tool_position = [14,14] 40.times { @pixels << '.'*40 } end def plot_pixel(x,y, c) return if x<0 || y<0 || x>39 || y > 39 @pixels[y] = @pixels[y][0..x][0..-2]+c+@pixels[y][(x+1)..-1] end def show @pixels.each do |line| puts line.gsub('.','. ').gsub('0','0 ').gsub('1','1 ').gsub('2','2 ').gsub('X','X ').gsub('o','o ') end end # dP[x+1,y]: 1 + 2 x # dP[x-1,y]: 1 - 2 x # dP[x, y+1]: 1 + 2 y # dP[x, y-1]: 1 - 2 y # dP[x+1, y+1]: 2 (1 + x + y) 1+2x+1+2y # dP[x+1, y-1]: 2 (1 + x - y) 1+2x+1-2y # dP[x-1, y-1]: 2 (1 - x - y) 2-2x-2y # dP[x-1, y+1]: 2 (1 - x + y) 2-2x+2x # dP[x+a, y+b]: |dx| - 2*dx*x + |dy| + 2*dy*y # Algorithm from the wikipedia aricle on the Midpoint circle algorithm. def raster_circle(radius) f = 1-radius ddF_x = 1 ddF_y = -2*radius x = 0 y = radius while x<=y if f>0 y -= 1 ddF_y += 2 f += ddF_y end x += 1 ddF_x += 2 f += ddF_x plot_pixel(x+14,-y+14,'X') end x += 1 ddF_x += 2 f += ddF_x while y>0 if f<0 x += 1 ddF_x += 2 f += ddF_x end y -= 1 ddF_y += 2 f += ddF_y plot_pixel(x+14,-y+14,'o') end end # An "ideal" arc. Computationally expensive, but always pure def pure_arc(theta, segment, angular_direction, radius) var = [(sin(theta)*(radius)), (cos(theta)*(radius))] error_sum = 0.0 error_count = 0.0 max_error = 0.0 (PI*2*radius).ceil.times do if var[0].abs 0 plot_pixel(x+14, -y+14, "012"[i%3].chr) else plot_pixel(x+14, -y+14, "X") end dx = (y==0) ? -x.sign : y.sign*angular_direction dy = (x==0) ? -y.sign : -x.sign*angular_direction pp [[x,y],[dx,dy]] if x.abs=tx.abs) && (y.abs>=ty.abs) i += 1 end puts "Target #{[tx,ty].inspect}" plot_pixel(tx+14, -ty+14, "o") pp [x,y] puts "Diameter: #{max_x-min_x}" end # A DDA-direct search circle interpolator. Optimal and impure def arc_supaoptimal(theta, angular_travel, radius) radius = radius x = (sin(theta)*radius).round y = (cos(theta)*radius).round angular_direction = angular_travel.sign tx = (sin(theta+angular_travel)*(radius-0.5)).floor ty = (cos(theta+angular_travel)*(radius-0.5)).floor f = (x**2 + y**2 - radius**2).round x2 = 2*x y2 = 2*y dx = (y==0) ? -x.sign : y.sign*angular_direction dy = (x==0) ? -y.sign : -x.sign*angular_direction max_steps = (angular_travel.abs*radius*2).floor # dP[x+1,y]: 1 + 2 x # dP[x, y+1]: 1 + 2 y max_steps.times do |i| if i > 0 plot_pixel(x+20, -y+20, "012"[i%3].chr) else plot_pixel(x+20, -y+20, "X") end raise "x2 out of range" unless x2 == 2*x raise "y2 out of range" unless y2 == 2*y f_should_be = (x**2+y**2-radius**2) if f.round != f_should_be.round show raise "f out of range. Is #{f}, should be #{f_should_be}" end if x.abs= f_diagonal.abs) y += dy dx = y.sign*angular_direction unless y == 0 y2 += 2*dy f = f_diagonal end dy = -x.sign*angular_direction unless x == 0 else y += dy f += 1+y2*dy y2 += 2*dy f_diagonal = f + 1 + x2*dx if (f.abs >= f_diagonal.abs) x += dx dy = -x.sign*angular_direction unless x == 0 x2 += 2*dx f = f_diagonal end dx = y.sign*angular_direction unless y == 0 end break if x*ty.sign*angular_direction>=tx*ty.sign*angular_direction && y*tx.sign*angular_direction<=ty*tx.sign*angular_direction end plot_pixel(tx+20, -ty+20, "o") return {:tx => tx, :ty => ty, :x => x, :y => y} end end test = CircleTest.new test.init test.arc_clean(0, Math::PI*2, 3) # (1..10000).each do |r| # test.init # data = test.arc_supaoptimal(2.9, Math::PI*1, r) # if (data[:tx]-data[:x]).abs > 1 || (data[:ty]-data[:y]).abs > 1 # puts "r=#{r} fails target control" # pp data # puts # end # end # test.init # data = test.arc_supaoptimal(1.1, -Math::PI, 19) # pp data #test.pure_arc(0,1,1,4) test.show