/*
report.c - reporting and messaging methods
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
/*
This file functions as the primary feedback interface for Grbl. Any outgoing data, such
as the protocol status messages, feedback messages, and status reports, are stored here.
For the most part, these functions primarily are called from protocol.c methods. If a
different style feedback is desired (i.e. JSON), then a user can change these following
methods to accomodate their needs.
*/
#include "grbl.h"
// Handles the primary confirmation protocol response for streaming interfaces and human-feedback.
// For every incoming line, this method responds with an 'ok' for a successful command or an
// 'error:' to indicate some error event with the line or some critical system error during
// operation. Errors events can originate from the g-code parser, settings module, or asynchronously
// from a critical error, such as a triggered hard limit. Interface should always monitor for these
// responses.
// NOTE: In silent mode, all error codes are greater than zero.
// TODO: Install silent mode to return only numeric values, primarily for GUIs.
void report_status_message(uint8_t status_code)
{
if (status_code == 0) { // STATUS_OK
printPgmString(PSTR("ok\r\n"));
} else {
printPgmString(PSTR("error: "));
#ifdef REPORT_GUI_MODE
print_uint8_base10(status_code);
#else
switch(status_code) {
case STATUS_EXPECTED_COMMAND_LETTER:
printPgmString(PSTR("Expected command letter")); break;
case STATUS_BAD_NUMBER_FORMAT:
printPgmString(PSTR("Bad number format")); break;
case STATUS_INVALID_STATEMENT:
printPgmString(PSTR("Invalid statement")); break;
case STATUS_NEGATIVE_VALUE:
printPgmString(PSTR("Value < 0")); break;
case STATUS_SETTING_DISABLED:
printPgmString(PSTR("Setting disabled")); break;
case STATUS_SETTING_STEP_PULSE_MIN:
printPgmString(PSTR("Value < 3 usec")); break;
case STATUS_SETTING_READ_FAIL:
printPgmString(PSTR("EEPROM read fail. Using defaults")); break;
case STATUS_IDLE_ERROR:
printPgmString(PSTR("Not idle")); break;
case STATUS_ALARM_LOCK:
printPgmString(PSTR("Alarm lock")); break;
case STATUS_SOFT_LIMIT_ERROR:
printPgmString(PSTR("Homing not enabled")); break;
case STATUS_OVERFLOW:
printPgmString(PSTR("Line overflow")); break;
#ifdef MAX_STEP_RATE_HZ
case STATUS_MAX_STEP_RATE_EXCEEDED:
printPgmString(PSTR("Step rate > 30kHz")); break;
#endif
// Common g-code parser errors.
case STATUS_GCODE_MODAL_GROUP_VIOLATION:
printPgmString(PSTR("Modal group violation")); break;
case STATUS_GCODE_UNSUPPORTED_COMMAND:
printPgmString(PSTR("Unsupported command")); break;
case STATUS_GCODE_UNDEFINED_FEED_RATE:
printPgmString(PSTR("Undefined feed rate")); break;
default:
// Remaining g-code parser errors with error codes
printPgmString(PSTR("Invalid gcode ID:"));
print_uint8_base10(status_code); // Print error code for user reference
}
#endif
printPgmString(PSTR("\r\n"));
}
}
// Prints alarm messages.
void report_alarm_message(int8_t alarm_code)
{
printPgmString(PSTR("ALARM: "));
#ifdef REPORT_GUI_MODE
print_uint8_base10(alarm_code);
#else
switch (alarm_code) {
case ALARM_HARD_LIMIT_ERROR:
printPgmString(PSTR("Hard limit")); break;
case ALARM_SOFT_LIMIT_ERROR:
printPgmString(PSTR("Soft limit")); break;
case ALARM_ABORT_CYCLE:
printPgmString(PSTR("Abort during cycle")); break;
case ALARM_PROBE_FAIL:
printPgmString(PSTR("Probe fail")); break;
case ALARM_HOMING_FAIL:
printPgmString(PSTR("Homing fail")); break;
}
#endif
printPgmString(PSTR("\r\n"));
delay_ms(500); // Force delay to ensure message clears serial write buffer.
}
// Prints feedback messages. This serves as a centralized method to provide additional
// user feedback for things that are not of the status/alarm message protocol. These are
// messages such as setup warnings, switch toggling, and how to exit alarms.
// NOTE: For interfaces, messages are always placed within brackets. And if silent mode
// is installed, the message number codes are less than zero.
// TODO: Install silence feedback messages option in settings
void report_feedback_message(uint8_t message_code)
{
printPgmString(PSTR("["));
switch(message_code) {
case MESSAGE_CRITICAL_EVENT:
printPgmString(PSTR("Reset to continue")); break;
case MESSAGE_ALARM_LOCK:
printPgmString(PSTR("'$H'|'$X' to unlock")); break;
case MESSAGE_ALARM_UNLOCK:
printPgmString(PSTR("Caution: Unlocked")); break;
case MESSAGE_ENABLED:
printPgmString(PSTR("Enabled")); break;
case MESSAGE_DISABLED:
printPgmString(PSTR("Disabled")); break;
case MESSAGE_SAFETY_DOOR_AJAR:
printPgmString(PSTR("Check Door")); break;
}
printPgmString(PSTR("]\r\n"));
}
// Welcome message
void report_init_message()
{
printPgmString(PSTR("\r\nGrbl " GRBL_VERSION " ['$' for help]\r\n"));
}
// Grbl help message
void report_grbl_help() {
#ifndef REPORT_GUI_MODE
printPgmString(PSTR("$$ (view Grbl settings)\r\n"
"$# (view # parameters)\r\n"
"$G (view parser state)\r\n"
"$I (view build info)\r\n"
"$N (view startup blocks)\r\n"
"$x=value (save Grbl setting)\r\n"
"$Nx=line (save startup block)\r\n"
"$C (check gcode mode)\r\n"
"$X (kill alarm lock)\r\n"
"$H (run homing cycle)\r\n"
"~ (cycle start)\r\n"
"! (feed hold)\r\n"
"? (current status)\r\n"
"ctrl-x (reset Grbl)\r\n"));
#endif
}
// Grbl global settings print out.
// NOTE: The numbering scheme here must correlate to storing in settings.c
void report_grbl_settings() {
// Print Grbl settings.
#ifdef REPORT_GUI_MODE
printPgmString(PSTR("$0=")); print_uint8_base10(settings.pulse_microseconds);
printPgmString(PSTR("\r\n$1=")); print_uint8_base10(settings.stepper_idle_lock_time);
printPgmString(PSTR("\r\n$2=")); print_uint8_base10(settings.step_invert_mask);
printPgmString(PSTR("\r\n$3=")); print_uint8_base10(settings.dir_invert_mask);
printPgmString(PSTR("\r\n$4=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
printPgmString(PSTR("\r\n$5=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
printPgmString(PSTR("\r\n$6=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN));
printPgmString(PSTR("\r\n$10=")); print_uint8_base10(settings.status_report_mask);
printPgmString(PSTR("\r\n$11=")); printFloat_SettingValue(settings.junction_deviation);
printPgmString(PSTR("\r\n$12=")); printFloat_SettingValue(settings.arc_tolerance);
printPgmString(PSTR("\r\n$13=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
printPgmString(PSTR("\r\n$20=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
printPgmString(PSTR("\r\n$21=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
printPgmString(PSTR("\r\n$22=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
printPgmString(PSTR("\r\n$23=")); print_uint8_base10(settings.homing_dir_mask);
printPgmString(PSTR("\r\n$24=")); printFloat_SettingValue(settings.homing_feed_rate);
printPgmString(PSTR("\r\n$25=")); printFloat_SettingValue(settings.homing_seek_rate);
printPgmString(PSTR("\r\n$26=")); print_uint8_base10(settings.homing_debounce_delay);
printPgmString(PSTR("\r\n$27=")); printFloat_SettingValue(settings.homing_pulloff);
printPgmString(PSTR("\r\n"));
#else
printPgmString(PSTR("$0=")); print_uint8_base10(settings.pulse_microseconds);
printPgmString(PSTR(" (step pulse, usec)\r\n$1=")); print_uint8_base10(settings.stepper_idle_lock_time);
printPgmString(PSTR(" (step idle delay, msec)\r\n$2=")); print_uint8_base10(settings.step_invert_mask);
printPgmString(PSTR(" (step port invert mask:")); print_uint8_base2(settings.step_invert_mask);
printPgmString(PSTR(")\r\n$3=")); print_uint8_base10(settings.dir_invert_mask);
printPgmString(PSTR(" (dir port invert mask:")); print_uint8_base2(settings.dir_invert_mask);
printPgmString(PSTR(")\r\n$4=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
printPgmString(PSTR(" (step enable invert, bool)\r\n$5=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
printPgmString(PSTR(" (limit pins invert, bool)\r\n$6=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN));
printPgmString(PSTR(" (probe pin invert, bool)\r\n$10=")); print_uint8_base10(settings.status_report_mask);
printPgmString(PSTR(" (status report mask:")); print_uint8_base2(settings.status_report_mask);
printPgmString(PSTR(")\r\n$11=")); printFloat_SettingValue(settings.junction_deviation);
printPgmString(PSTR(" (junction deviation, mm)\r\n$12=")); printFloat_SettingValue(settings.arc_tolerance);
printPgmString(PSTR(" (arc tolerance, mm)\r\n$13=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
printPgmString(PSTR(" (report inches, bool)\r\n$20=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
printPgmString(PSTR(" (soft limits, bool)\r\n$21=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
printPgmString(PSTR(" (hard limits, bool)\r\n$22=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
printPgmString(PSTR(" (homing cycle, bool)\r\n$23=")); print_uint8_base10(settings.homing_dir_mask);
printPgmString(PSTR(" (homing dir invert mask:")); print_uint8_base2(settings.homing_dir_mask);
printPgmString(PSTR(")\r\n$24=")); printFloat_SettingValue(settings.homing_feed_rate);
printPgmString(PSTR(" (homing feed, mm/min)\r\n$25=")); printFloat_SettingValue(settings.homing_seek_rate);
printPgmString(PSTR(" (homing seek, mm/min)\r\n$26=")); print_uint8_base10(settings.homing_debounce_delay);
printPgmString(PSTR(" (homing debounce, msec)\r\n$27=")); printFloat_SettingValue(settings.homing_pulloff);
printPgmString(PSTR(" (homing pull-off, mm)\r\n"));
#endif
// Print axis settings
uint8_t idx, set_idx;
uint8_t val = AXIS_SETTINGS_START_VAL;
for (set_idx=0; set_idxline_number;
}
printInteger(ln);
#endif
#ifdef REPORT_REALTIME_RATE
// Report realtime rate
printPgmString(PSTR(",F:"));
printFloat_RateValue(st_get_realtime_rate());
#endif
#ifdef REPORT_LIMIT_PIN_STATE
printPgmString(PSTR(",Lim:"));
uint8_t idx;
for (idx=0; idx\r\n"));
}