/* stepper.c - stepper motor driver: executes motion plans using stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2011 Sungeun K. Jeon Copyright (c) 2011 Jens Geisler Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "stepper.h" #include "config.h" #include "settings.h" #include #include #include #include "nuts_bolts.h" #include #include "planner.h" #include "limits.h" #include "print.h" // Some useful constants #define STEP_MASK ((1< // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates by block->rate_delta // during the first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is always +/- block->rate_delta and is applied at a constant rate following the midpoint rule // by the trapezoid generator, which is called ACCELERATION_TICKS_PER_SECOND times per second. static void set_step_events_per_minute(uint32_t steps_per_minute); // Stepper state initialization static void st_wake_up() { // Initialize stepper output bits out_bits = (0) ^ (settings.invert_mask); // Set step pulse time. Ad hoc computation from oscilloscope. step_pulse_time = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND) >> 3); // Enable steppers by resetting the stepper disable port STEPPERS_DISABLE_PORT &= ~(1< CYCLES_PER_ACCELERATION_TICK) { st.trapezoid_tick_cycle_counter -= CYCLES_PER_ACCELERATION_TICK; return(true); } else { return(false); } } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is executed at the rate set with // config_step_timer. It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It is supported by The Stepper Port Reset Interrupt which it uses to reset the stepper port after each pulse. // The bresenham line tracer algorithm controls all three stepper outputs simultaneously with these two interrupts. // NOTE: ISR_NOBLOCK allows SIG_OVERFLOW2 to trigger on-time regardless of time in this handler. // TODO: ISR_NOBLOCK is the same as the old SIGNAL with sei() method, but is optimizable by the compiler. On // an oscilloscope there is a weird hitch in the step pulse during high load operation. Very infrequent, but // when this does happen most of the time the pulse falling edge is randomly delayed by 20%-50% of the total // intended pulse time, but sometimes it pulses less than 3usec. The former likely caused by the serial // interrupt doing its thing, not that big of a deal, but the latter cause is unknown and worrisome. Need // to track down what is causing this problem. Functionally, this shouldn't cause any noticeable issues // as long as stepper drivers have a pulse minimum of 1usec or so (Pololu and any Allegro IC are ok). ISR(TIMER1_COMPA_vect,ISR_NOBLOCK) { if (busy) { return; } // The busy-flag is used to avoid reentering this interrupt busy = true; // Set the direction pins a couple of nanoseconds before we step the steppers STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK); // Then pulse the stepping pins STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits; // Reset step pulse reset timer so that The Stepper Port Reset Interrupt can reset the signal after // exactly settings.pulse_microseconds microseconds. TCNT2 = step_pulse_time; // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? If so, initialize next motion. current_block = plan_get_current_block(); if (current_block != NULL) { if (!st.feed_hold) { // During feed hold, do not update rate and trap counter. Keep decelerating. st.trapezoid_adjusted_rate = current_block->initial_rate; set_step_events_per_minute(st.trapezoid_adjusted_rate); // Initialize cycles_per_step_event st.trapezoid_tick_cycle_counter = CYCLES_PER_ACCELERATION_TICK/2; // Start halfway for midpoint rule. } st.min_safe_rate = current_block->rate_delta + (current_block->rate_delta >> 1); // 1.5 x rate_delta st.counter_x = -(current_block->step_event_count >> 1); st.counter_y = st.counter_x; st.counter_z = st.counter_x; st.event_count = current_block->step_event_count; st.step_events_completed = 0; } else { st.cycle_start = false; st.feed_hold = false; st_go_idle(); } } if (current_block != NULL) { // Execute step displacement profile by bresenham line algorithm out_bits = current_block->direction_bits; st.counter_x += current_block->steps_x; if (st.counter_x > 0) { out_bits |= (1<steps_y; if (st.counter_y > 0) { out_bits |= (1<steps_z; if (st.counter_z > 0) { out_bits |= (1<step_event_count) { if (st.feed_hold) { // Check for and execute feed hold by enforcing a steady deceleration from the moment of // execution. The rate of deceleration is limited by rate_delta and will never decelerate // faster or slower than in normal operation. If the distance required for the feed hold // deceleration spans more than one block, the initial rate of the following blocks are not // updated and deceleration is continued according to their corresponding rate_delta. // NOTE: The trapezoid tick cycle counter is not updated intentionally. This ensures that // the deceleration is smooth regardless of where the feed hold is initiated and if the // deceleration distance spans multiple blocks. if ( iterate_trapezoid_cycle_counter() ) { // If deceleration complete, set system flags and shutdown steppers. if (st.trapezoid_adjusted_rate <= current_block->rate_delta) { // Just go idle. Do not NULL current block. The bresenham algorithm variables must // remain intact to ensure the stepper path is exactly the same. st.cycle_start = false; st_go_idle(); sys_state |= BIT_REPLAN_CYCLE; // Flag main program that feed hold is complete. } else { st.trapezoid_adjusted_rate -= current_block->rate_delta; set_step_events_per_minute(st.trapezoid_adjusted_rate); } } } else { // The trapezoid generator always checks step event location to ensure de/ac-celerations are // executed and terminated at exactly the right time. This helps prevent over/under-shooting // the target position and speed. // NOTE: By increasing the ACCELERATION_TICKS_PER_SECOND in config.h, the resolution of the // discrete velocity changes increase and accuracy can increase as well to a point. Numerical // round-off errors can effect this, if set too high. This is important to note if a user has // very high acceleration and/or feedrate requirements for their machine. if (st.step_events_completed < current_block->accelerate_until) { // Iterate cycle counter and check if speeds need to be increased. if ( iterate_trapezoid_cycle_counter() ) { st.trapezoid_adjusted_rate += current_block->rate_delta; if (st.trapezoid_adjusted_rate >= current_block->nominal_rate) { // Reached nominal rate a little early. Cruise at nominal rate until decelerate_after. st.trapezoid_adjusted_rate = current_block->nominal_rate; } set_step_events_per_minute(st.trapezoid_adjusted_rate); } } else if (st.step_events_completed >= current_block->decelerate_after) { // Reset trapezoid tick cycle counter to make sure that the deceleration is performed the // same every time. Reset to CYCLES_PER_ACCELERATION_TICK/2 to follow the midpoint rule for // an accurate approximation of the deceleration curve. if (st.step_events_completed == current_block-> decelerate_after) { st.trapezoid_tick_cycle_counter = CYCLES_PER_ACCELERATION_TICK/2; } else { // Iterate cycle counter and check if speeds need to be reduced. if ( iterate_trapezoid_cycle_counter() ) { // NOTE: We will only do a full speed reduction if the result is more than the minimum safe // rate, initialized in trapezoid reset as 1.5 x rate_delta. Otherwise, reduce the speed by // half increments until finished. The half increments are guaranteed not to exceed the // CNC acceleration limits, because they will never be greater than rate_delta. This catches // small errors that might leave steps hanging after the last trapezoid tick or a very slow // step rate at the end of a full stop deceleration in certain situations. The half rate // reductions should only be called once or twice per block and create a nice smooth // end deceleration. if (st.trapezoid_adjusted_rate > st.min_safe_rate) { st.trapezoid_adjusted_rate -= current_block->rate_delta; } else { st.trapezoid_adjusted_rate >>= 1; // Bit shift divide by 2 } if (st.trapezoid_adjusted_rate < current_block->final_rate) { // Reached final rate a little early. Cruise to end of block at final rate. st.trapezoid_adjusted_rate = current_block->final_rate; } set_step_events_per_minute(st.trapezoid_adjusted_rate); } } } else { // No accelerations. Make sure we cruise exactly at the nominal rate. if (st.trapezoid_adjusted_rate != current_block->nominal_rate) { st.trapezoid_adjusted_rate = current_block->nominal_rate; set_step_events_per_minute(st.trapezoid_adjusted_rate); } } } } else { // If current block is finished, reset pointer current_block = NULL; plan_discard_current_block(); } } out_bits ^= settings.invert_mask; // Apply stepper invert mask busy = false; } // This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets // the motor port after a short period (settings.pulse_microseconds) completing one step cycle. ISR(TIMER2_OVF_vect) { // Reset stepping pins (leave the direction pins) STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (settings.invert_mask & STEP_MASK); } // Reset and clear stepper subsystem variables void st_reset() { memset(&st, 0, sizeof(st)); set_step_events_per_minute(MINIMUM_STEPS_PER_MINUTE); current_block = NULL; busy = false; } // Initialize and start the stepper motor subsystem void st_init() { // Configure directions of interface pins STEPPING_DDR |= STEPPING_MASK; STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | settings.invert_mask; STEPPERS_DISABLE_DDR |= 1<> 3; prescaler = 1; // prescaler: 8 actual_cycles = ceiling * 8L; } else if (cycles <= 0x3fffffL) { ceiling = cycles >> 6; prescaler = 2; // prescaler: 64 actual_cycles = ceiling * 64L; } else if (cycles <= 0xffffffL) { ceiling = (cycles >> 8); prescaler = 3; // prescaler: 256 actual_cycles = ceiling * 256L; } else if (cycles <= 0x3ffffffL) { ceiling = (cycles >> 10); prescaler = 4; // prescaler: 1024 actual_cycles = ceiling * 1024L; } else { // Okay, that was slower than we actually go. Just set the slowest speed ceiling = 0xffff; prescaler = 4; actual_cycles = 0xffff * 1024; } // Set prescaler TCCR1B = (TCCR1B & ~(0x07<step_event_count - st.step_events_completed); // Update initial rate and timers after feed hold. st.trapezoid_adjusted_rate = 0; // Resumes from rest set_step_events_per_minute(st.trapezoid_adjusted_rate); st.trapezoid_tick_cycle_counter = CYCLES_PER_ACCELERATION_TICK/2; // Start halfway for midpoint rule. st.step_events_completed = 0; st.feed_hold = false; // Release feed hold. Cycle is ready to re-start. }