/*
protocol.c - the serial protocol master control unit
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2012 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
#include
#include
#include "protocol.h"
#include "gcode.h"
#include "serial.h"
#include "print.h"
#include "settings.h"
#include "config.h"
#include "nuts_bolts.h"
#include "stepper.h"
#include "report.h"
#include "motion_control.h"
static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated.
static uint8_t char_counter; // Last character counter in line variable.
static uint8_t iscomment; // Comment/block delete flag for processor to ignore comment characters.
void protocol_init()
{
char_counter = 0; // Reset line input
iscomment = false;
report_init_message(); // Welcome message
PINOUT_DDR &= ~(PINOUT_MASK); // Set as input pins
PINOUT_PORT |= PINOUT_MASK; // Enable internal pull-up resistors. Normal high operation.
PINOUT_PCMSK |= PINOUT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << PINOUT_INT); // Enable Pin Change Interrupt
}
// Executes user startup script, if stored.
void protocol_execute_startup()
{
uint8_t n;
for (n=0; n < N_STARTUP_LINE; n++) {
if (!(settings_read_startup_line(n, line))) {
report_status_message(STATUS_SETTING_READ_FAIL);
} else {
if (line[0] != 0) {
printString(line); // Echo startup line to indicate execution.
report_status_message(gc_execute_line(line));
}
}
}
}
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
// only the runtime command execute variable to have the main program execute these when
// its ready. This works exactly like the character-based runtime commands when picked off
// directly from the incoming serial data stream.
ISR(PINOUT_INT_vect)
{
// Enter only if any pinout pin is actively low.
if ((PINOUT_PIN & PINOUT_MASK) ^ PINOUT_MASK) {
if (bit_isfalse(PINOUT_PIN,bit(PIN_RESET))) {
mc_alarm();
sys.execute |= EXEC_RESET; // Set as true
} else if (bit_isfalse(PINOUT_PIN,bit(PIN_FEED_HOLD))) {
sys.execute |= EXEC_FEED_HOLD;
} else if (bit_isfalse(PINOUT_PIN,bit(PIN_CYCLE_START))) {
sys.execute |= EXEC_CYCLE_START;
}
}
}
// Executes run-time commands, when required. This is called from various check points in the main
// program, primarily where there may be a while loop waiting for a buffer to clear space or any
// point where the execution time from the last check point may be more than a fraction of a second.
// This is a way to execute runtime commands asynchronously (aka multitasking) with grbl's g-code
// parsing and planning functions. This function also serves as an interface for the interrupts to
// set the system runtime flags, where only the main program handles them, removing the need to
// define more computationally-expensive volatile variables. This also provides a controlled way to
// execute certain tasks without having two or more instances of the same task, such as the planner
// recalculating the buffer upon a feedhold or override.
// NOTE: The sys.execute variable flags are set by the serial read subprogram, except where noted,
// but may be set by any process, such as a switch pin change interrupt when pinouts are installed.
void protocol_execute_runtime()
{
if (sys.execute) { // Enter only if any bit flag is true
uint8_t rt_exec = sys.execute; // Avoid calling volatile multiple times
// System alarm. Everything has shutdown by either something that has gone wrong or issuing
// the Grbl soft-reset/abort. Check the system states to report any critical error found.
// If critical, disable Grbl by entering an infinite loop until system reset/abort.
// NOTE: The system alarm state is also used to set
if (rt_exec & EXEC_ALARM) {
// Limit switch critical event. Lock out Grbl until reset.
if (sys.state == STATE_LIMIT) {
report_status_message(STATUS_HARD_LIMIT);
sys.state = STATE_ALARM;
report_feedback_message(MESSAGE_CRITICAL_EVENT);
while (bit_isfalse(sys.execute,EXEC_RESET)) { sleep_mode(); }
}
// Check if a runtime abort command was issued during a cycle. If so, message the user
// that position may have been lost and set alarm state to force re-homing, if enabled.
if (sys.state == STATE_CYCLE) {
report_status_message(STATUS_ABORT_CYCLE);
sys.state = STATE_ALARM;
}
bit_false(sys.execute,EXEC_ALARM);
}
// System abort. Steppers have already been force stopped.
if (rt_exec & EXEC_RESET) {
sys.abort = true; // Only place this is set true.
return; // Nothing else to do but exit.
}
// Execute and serial print status
if (rt_exec & EXEC_STATUS_REPORT) {
report_realtime_status();
bit_false(sys.execute,EXEC_STATUS_REPORT);
}
// Initiate stepper feed hold
if (rt_exec & EXEC_FEED_HOLD) {
st_feed_hold(); // Initiate feed hold.
bit_false(sys.execute,EXEC_FEED_HOLD);
}
// Reinitializes the stepper module running state and, if a feed hold, re-plans the buffer.
// NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
if (rt_exec & EXEC_CYCLE_STOP) {
st_cycle_reinitialize();
bit_false(sys.execute,EXEC_CYCLE_STOP);
}
if (rt_exec & EXEC_CYCLE_START) {
st_cycle_start(); // Issue cycle start command to stepper subsystem
if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) {
sys.auto_start = true; // Re-enable auto start after feed hold.
}
bit_false(sys.execute,EXEC_CYCLE_START);
}
}
// Overrides flag byte (sys.override) and execution should be installed here, since they
// are runtime and require a direct and controlled interface to the main stepper program.
}
// Directs and executes one line of formatted input from protocol_process. While mostly
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
// settings, initiating the homing cycle, and toggling switch states. This differs from
// the runtime command module by being susceptible to when Grbl is ready to execute the
// next line during a cycle, so for switches like block delete, the switch only effects
// the lines that are processed afterward, not necessarily real-time during a cycle,
// since there are motions already stored in the buffer. However, this 'lag' should not
// be an issue, since these commands are not typically used during a cycle.
uint8_t protocol_execute_line(char *line)
{
// Grbl internal command and parameter lines are of the form '$4=374.3' or '$' for help
if(line[0] == '$') {
uint8_t char_counter = 1;
uint8_t helper_var = 0; // Helper variable
float parameter, value;
switch( line[char_counter] ) {
case 0 : report_grbl_help(); break;
case '$' : // Prints Grbl settings
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
else { report_grbl_settings(); }
break;
case '#' : // Print gcode parameters
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
else { report_gcode_parameters(); }
break;
case 'G' : // Prints gcode parser state
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
else { report_gcode_modes(); }
break;
case 'H' : // Perform homing cycle
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
// Only perform homing if Grbl is idle or lost.
if ( sys.state==STATE_IDLE || sys.state==STATE_ALARM ) { mc_go_home(); }
else { return(STATUS_IDLE_ERROR); }
} else { return(STATUS_SETTING_DISABLED); }
break;
// case 'J' : break; // Jogging methods
// TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be
// susceptible to other runtime commands except for e-stop. The jogging function is intended to
// be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped
// steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would
// start motion and toggle off would initiate a deceleration to stop. One could 'feather' the
// motion by repeatedly toggling to slow the motion to the desired location. Location data would
// need to be updated real-time and supplied to the user through status queries.
// More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are
// handled by the planner. It would be possible for the jog subprogram to insert blocks into the
// block buffer without having the planner plan them. It would need to manage de/ac-celerations
// on its own carefully. This approach could be effective and possibly size/memory efficient.
case 'S' : // Switch modes
// Set helper_var as switch bitmask or clearing flag
switch (line[++char_counter]) {
case '0' : helper_var = BITFLAG_CHECK_GCODE; break;
case '1' : helper_var = BITFLAG_BLOCK_DELETE; break;
case '2' : helper_var = BITFLAG_SINGLE_BLOCK; break;
case '3' : helper_var = BITFLAG_OPT_STOP; break;
default : return(STATUS_INVALID_STATEMENT);
}
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
if ( helper_var & BITFLAG_CHECK_GCODE ) {
// Perform reset when toggling off. Check g-code mode should only work if Grbl
// is idle and ready, regardless of homing locks. This is mainly to keep things
// simple and consistent.
if ( bit_istrue(gc.switches,helper_var) ) { sys.execute |= EXEC_RESET; }
else if (sys.state) { return(STATUS_IDLE_ERROR); }
}
gc.switches ^= helper_var;
if (bit_istrue(gc.switches,helper_var)) { report_feedback_message(MESSAGE_ENABLED); }
else { report_feedback_message(MESSAGE_DISABLED); }
break;
case 'X' : // Disable homing lock
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
if (sys.state == STATE_ALARM) {
report_feedback_message(MESSAGE_HOMING_UNLOCK);
sys.state = STATE_IDLE;
} else {
return(STATUS_SETTING_DISABLED);
}
break;
case 'N' : // Startup lines.
if ( line[++char_counter] == 0 ) { // Print startup lines
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
if (!(settings_read_startup_line(helper_var, line))) {
report_status_message(STATUS_SETTING_READ_FAIL);
} else {
report_startup_line(helper_var,line);
}
}
break;
} else { // Store startup line
helper_var = true; // Set helper_var to flag storing method.
// No break. Continues into default: to read remaining command characters.
}
default : // Storing setting methods
if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); }
if(line[char_counter++] != '=') { return(STATUS_UNSUPPORTED_STATEMENT); }
if (helper_var) { // Store startup line
// Prepare sending gcode block to gcode parser by shifting all characters
helper_var = char_counter; // Set helper variable as counter to start of gcode block
do {
line[char_counter-helper_var] = line[char_counter];
} while (line[char_counter++] != 0);
// Execute gcode block to ensure block is valid.
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
if (helper_var) { return(helper_var); }
else {
helper_var = trunc(parameter); // Set helper_var to int value of parameter
settings_store_startup_line(helper_var,line);
}
} else { // Store global setting.
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
if(line[char_counter] != 0) { return(STATUS_UNSUPPORTED_STATEMENT); }
return(settings_store_global_setting(parameter, value));
}
}
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
} else {
// If homing is enabled and position is lost, lock out all g-code commands.
if (sys.state != STATE_ALARM) {
return(gc_execute_line(line)); // Everything else is gcode
// TODO: Install option to set system alarm upon any error code received back from the
// the g-code parser. This is a common safety feature on CNCs to help prevent crashes
// if the g-code doesn't perform as intended.
} else {
return(STATUS_HOMING_LOCK);
}
}
}
// Process and report status one line of incoming serial data. Performs an initial filtering
// by removing spaces and comments and capitalizing all letters.
void protocol_process()
{
uint8_t c;
while((c = serial_read()) != SERIAL_NO_DATA) {
if ((c == '\n') || (c == '\r')) { // End of line reached
// Runtime command check point before executing line. Prevent any furthur line executions.
// NOTE: If there is no line, this function should quickly return to the main program when
// the buffer empties of non-executable data.
protocol_execute_runtime();
if (sys.abort) { return; } // Bail to main program upon system abort
if (char_counter > 0) {// Line is complete. Then execute!
line[char_counter] = 0; // Terminate string
report_status_message(protocol_execute_line(line));
} else {
// Empty or comment line. Skip block.
report_status_message(STATUS_OK); // Send status message for syncing purposes.
}
char_counter = 0; // Reset line buffer index
iscomment = false; // Reset comment flag
} else {
if (iscomment) {
// Throw away all comment characters
if (c == ')') {
// End of comment. Resume line.
iscomment = false;
}
} else {
if (c <= ' ') {
// Throw away whitepace and control characters
} else if (c == '/') {
// Disable block delete and throw away characters. Will ignore until EOL.
if (bit_istrue(gc.switches,BITFLAG_BLOCK_DELETE)) {
iscomment = true;
}
} else if (c == '(') {
// Enable comments flag and ignore all characters until ')' or EOL.
iscomment = true;
} else if (char_counter >= LINE_BUFFER_SIZE-1) {
// Throw away any characters beyond the end of the line buffer
} else if (c >= 'a' && c <= 'z') { // Upcase lowercase
line[char_counter++] = c-'a'+'A';
} else {
line[char_counter++] = c;
}
}
}
}
}