- Rudimentary CoreXY kinematics support. Didn’t test, but homing and
feed holds should work. See config.h. Please report successes and
issues as we find bugs.
- G40 (disable cutter comp) is now “supported”. Meaning that Grbl will
no longer issue an error when typically sent in g-code program header.
- Refactored coolant and spindle state setting into separate functions
for future features.
- Configuration option for fixing homing behavior when there are two
limit switches on the same axis sharing an input pin.
- Created a new “grbl.h” that will eventually be used as the main
include file for Grbl. Also will help simply uploading through the
Arduino IDE
- Separated out the alarms execution flags from the realtime (used be
called runtime) execution flag variable. Now reports exactly what
caused the alarm. Expandable for new alarms later on.
- Refactored the homing cycle to support CoreXY.
- Applied @EliteEng updates to Mega2560 support. Some pins were
reconfigured.
- Created a central step to position and vice versa function. Needed
for non-traditional cartesian machines. Should make it easier later.
- Removed the new CPU map for the Uno. No longer going to used. There
will be only one configuration to keep things uniform.
This is likely the last major change to the v0.9 code base before push
to master. Only two minor things remain on the agenda (CoreXY support,
force clear EEPROM, and an extremely low federate bug).
- NEW! Grbl is now compile-able and may be flashed directly through the
Arduino IDE. Only minor changes were required for this compatibility.
See the Wiki to learn how to do it.
- New status reporting mask to turn on and off what Grbl sends back.
This includes machine coordinates, work coordinates, serial RX buffer
usage, and planner buffer usage. Expandable to more information on user
request, but that’s it for now.
- Settings have been completely renumbered to allow for future new
settings to be installed without having to constantly reshuffle and
renumber all of the settings every time.
- All settings masks have been standardized to mean bit 0 = X, bit 1 =
Y, and bit 2 = Z, to reduce confusion on how they work. The invert
masks used by the internal Grbl system were updated to accommodate this
change as well.
- New invert probe pin setting, which does what it sounds like.
- Fixed a probing cycle bug, where it would freeze intermittently, and
removed some redundant code.
- Homing may now be set to the origin wherever the limit switches are.
Traditionally machine coordinates should always be in negative space,
but when limit switches on are on the opposite side, the machine
coordinate would be set to -max_travel for the axis. Now you can always
make it [0,0,0] via a compile-time option in config.h. (Soft limits
routine was updated to account for this as well.)
- Probe coordinate message immediately after a probing cycle may now
be turned off via a compile-time option in config.h. By default the
probing location is always reported.
- Reduced the N_ARC_CORRECTION default value to reflect the changes in
how circles are generated by an arc tolerance, rather than a fixed arc
segment setting.
- Increased the incoming line buffer limit from 70 to 80 characters.
Had some extra memory space to invest into this.
- Fixed a bug where tool number T was not being tracked and reported
correctly.
- Added a print free memory function for debugging purposes. Not used
otherwise.
- Realtime rate report should now work during feed holds, but it hasn’t
been tested yet.
- Updated the streaming scripts with MIT-license and added the simple
streaming to the main stream.py script to allow for settings to be sent.
- Some minor code refactoring to improve flash efficiency. Reduced the
flash by several hundred KB, which was re-invested in some of these new
features.
- Added a new source and header file called system. These files contain
the system commands and variables, as well as all of the system headers
and standard libraries Grbl uses. Centralizing some of the code.
- Re-organized the include headers throughout the source code.
- ENABLE_M7 define was missing from config.h. Now there.
- SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No
uncommenting to prevent user issues. Minimum spindle RPM now provides
the lower, near 0V, scale adjustment, i.e. some spindles can go really
slow so why use up our 256 voltage bins for them?
- Remove some persistent variables from coolant and spindle control.
They were redundant.
- Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have
been there.
- Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing.
Before we had issues with performance, no longer.
- Fixed a bug with the hard limits and the software debounce feature
enabled. The invert limit pin setting wasn’t honored.
- Fixed a bug with the homing direction mask. Now is like it used to
be. At least for now.
- Re-organized main.c to serve as only as the reset/initialization
routine. Makes things a little bit clearer in terms of execution
procedures.
- Re-organized protocol.c as the overall master control unit for
execution procedures. Not quite there yet, but starting to make a
little more sense in how things are run.
- Removed updating of old settings records. So many new settings have
been added that it’s not worth adding the code to migrate old user
settings.
- Tweaked spindle_control.c a bit and made it more clear and consistent
with other parts of Grbl.
- Tweaked the stepper disable bit code in stepper.c. Requires less
flash memory.
- Homing travel calculations fixed. It was computing the min travel
rather than max.
- Auto-start disable and pausing after spindle or dwell commands.
Related to plan_synchronize() function call. Now fixed, but still need
to work on the system state.
- Pushed a fix to make this branch more Arduino IDE compatible. Removed
extern call in nuts_bolts.c
- Updated the stepper configuration option of enabling or disabling the
new Adaptive Multi-Axis Step Smoothing Algorithm. Now works either way.
- Updated some copyright info.
- Refactored system states to be more clear and concise. Alarm locks
processes when position is unknown to indicate to user something has
gone wrong.
- Changed mc_alarm to mc_reset, which now manages the system reset
function. Centralizes it.
- Renamed '$X' kill homing lock to kill alarm lock.
- Created an alarm error reporting method to clear up what is an alarm:
message vs a status error: message. For GUIs mainly. Alarm codes are
negative. Status codes are positive.
- Serial baud support upto 115200. Previous baudrate calc was unstable
for 57600 and above.
- Alarm state locks out all g-code blocks, including startup scripts,
but allows user to access settings and internal commands. For example,
to disable hard limits, if they are problematic.
- Hard limits do not respond in an alarm state.
- Fixed a problem with the hard limit interrupt during the homing
cycle. The interrupt register is still active during the homing cycle
and still signal the interrupt to trigger when re-enabled. Instead,
just disabled the register.
- Homing rate adjusted. All axes move at homing seek rate, regardless
of how many axes move at the same time. This is unlike how the stepper
module does it as a point to point rate.
- New config.h settings to disable the homing rate adjustment and the
force homing upon powerup.
- Reduced the number of startup lines back down to 2 from 3. This
discourages users from placing motion block in there, which can be very
dangerous.
- Startup blocks now run only after an alarm-free reset or after a
homing cycle. Does not run when $X kill is called. For satefy reasons
- Added some more notes to config.h.
- Added the ability to override some of the #defines around Grbl in
config.h, like planner buffer size, line buffer size, serial
send/receive buffers. Mainly to centralize the configurations to be
able to port to different microcontrollers later.
(All v0.8 features installed. Still likely buggy, but now thourough
testing will need to start to squash them all. As soon as we're done,
this will be pushed to master and v0.9 development will be started.
Please report ANY issues to us so we can get this rolled out ASAP.)
- User startup script! A user can now save one (up to 5 as compile-time
option) block of g-code in EEPROM memory. This will be run everytime
Grbl resets. Mainly to be used as a way to set your preferences, like
G21, G54, etc.
- New dry run and check g-code switches. Dry run moves ALL motions at
rapids rate ignoring spindle, coolant, and dwell commands. For rapid
physical proofing of your code. The check g-code switch ignores all
motion and provides the user a way to check if there are any errors in
their program that Grbl may not like.
- Program restart! (sort of). Program restart is typically an advanced
feature that allows users to restart a program mid-stream. The check
g-code switch can perform this feature by enabling the switch at the
start of the program, and disabling it at the desired point with some
minimal changes.
- New system state variable. This state variable tracks all of the
different state processes that Grbl performs, i.e. cycle start, feed
hold, homing, etc. This is mainly for making managing of these task
easier and more clear.
- Position lost state variable. Only when homing is enabled, Grbl will
refuse to move until homing is completed and position is known. This is
mainly for safety. Otherwise, it will let users fend for themselves.
- Moved the default settings defines into config.h. The plan is to
eventually create a set of config.h's for particular as-built machines
to help users from doing it themselves.
- Moved around misc defines into .h files. And lots of other little
things.
- G54 work coordinate system support. Up to 6 work coordinate systems
(G54-G59) available as a compile-time option.
- G10 command added to set work coordinate offsets from machine
position.
- G92/G92.1 position offsets and cancellation support. Properly follows
NIST standard rules with other systems.
- G53 absolute override now works correctly with new coordinate systems.
- Revamped g-code parser with robust error checking. Providing user
feedback with bad commands. Follows NIST standards.
- Planner module slightly changed to only expected position movements
in terms of machine coordinates only. This was to simplify coordinate
system handling, which is done solely by the g-code parser.
- Upon grbl system abort, machine position and work positions are
retained, while G92 offsets are reset per NIST standards.
- Compiler compatibility update for _delay_us().
- Updated README.
- ALPHA status. - Multitasking ability with run-time command executions
for real-time control and feedback. - Decelerating feed hold and resume
during operation. - System abort/reset, which immediately kills all
movement and re-initializes grbl. - Re-structured grbl to easily allow
for new features: Status reporting, jogging, backlash compensation. (To
be completed in the following releases.) - Resized TX/RX serial buffers
(32/128 bytes) - Increased planner buffer size to 20 blocks. - Updated
documentation.