- Increment to v1.1e due to new laser features.
- After several discussions with some prominent laser people, a few
tweaks to the new laser mode has been installed.
- LASER: M3 behaves in a constant power mode.
- LASER: M4 behaves in a dynamic power mode, where the laser power is
automatically adjusted based on how fast Grbl is moving relative to the
programmed feed rate. This is the same as the CONSTANT_POWER_PER_RATE
config.h option in the last version. NOTE: When not in motion in M4,
Grbl automatically turns off the laser. Again, it only operates while
moving!
- LASER: Only G1, G2, and G3 motion modes will turn on the laser. So,
this means that G0, G80 motion modes will always keep the laser
disabled. No matter if M3/M4 are active!
- LASER: A spindle stop override is automatically invoked when a laser
is put in a feed hold. This behavior may be disabled by a config.h
option.
- Lots of little tweaks to the g-code parser to help streamline it a
bit. It should no effect how it operates. Generally just added a parser
flag to track and execute certain scenarios a little more clearly.
- Jog motions now allow line numbers to be passed to it and will be
displayed in the status reports.
- Fixed a CoreXY homing bug.
- Fixed an issue when $13 is changed, WCO isn’t sent immediately.
- Altered how spindle PWM is set in the stepper ISR. Updated on a step
segment basis now. May need to change this back if there are any
oddities from doing this.
- Updated some documentation. Clarified why M0 no longer showing up in
$G and why a `1.` floating point values are shown with no decimals,
like so `1`.
- NOTE: This commit has largely been untested.
- Constant laser power per rate mode has been improved. Altered its
implementation to be more responsive and accurate.
- Based on LaserWeb dev feedback, only G1, G2, and G3 moves operate
with constant laser power mode. Meaning that G0, G38.x, and $J jogging
motions operate without it and will keep a constant power output. This
was specifically requested as a way to focus the laser by keeping the
laser on when not moving. Operationally, this shouldn’t alter how the
laser mode operates.
- Re-factored parts of the g-code parser and g-code state reports to
save a few hundred bytes of flash. What was done makes the code a bit
more unreadable (bad), but the flash space was in dire need. So, I’m
willing to live with it for now.
- Fixed a problem with $G g-code state reports. Showed `M0` program
pause during a run state. Now fixed to show nothing during a run state.
Also, `M30` program end was shown as `M2`. This was also corrected.
- Improved spindle stop override responsiveness by removing the
enforced spindle restoring delay. It’s not needed for a feature that is
user controlled.
- Fixed a bug with G2/3 arcs in inverse time mode.
- Updated the interface.md document to make it more clear how WPos: or
MPos: can be calculated from WCO:. Some GUI devs have failed to catch
this in the documentation.
- Increment to v1.1b due to status report tweak.
- Tweaked the buffer state status reports to show bytes and blocks
available, rather than in use. This does not require knowing the buffer
sizes beforehand. It’s implicit.
- Also, since buffer states are not used by most devs (after
inquiries), it is no longer enabled by default and a status mask option
was added for this.
- Fixed some typos and updated for the report tweak in the
documentation.
- Wrote a joystick implementation concept in the jogging markdown
document. Outlines how to get a low-latency feel to a joystick (and
other input devices).
- Removed XON/XOFF support. It’s not used by anyone because of its
inherent problems. Remains in older versions for reference.
- Added a compile option on how to handle the probe position during a
check mode.
- Fixed a jogging bug. If G93 is the modal state before a jogging
motion, the feed rate did not get calculated correctly. Fixed the issue.
- Refactored some code to save another 160+ bytes. Included an improved
float vector comparison macro and reducing a few large and repetitive
function calls.
- Fixed a probing bug (existing in v0.9 too) where the target positions
were not set correct and error handling was improper.
- Feature: Realtime feed, rapid, and spindle speed overrides. These
alter the running machine state within tens of milliseconds!
- Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of
programmed feed
- Rapid override: 100%, 50%, 25% rapid rate commands
- Spindle speed override: 100%, +/-10%, +/-1% commands with values
50-200% of programmed speed
- Override values have configurable limits and increments in
config.h.
- Feature: Realtime toggle overrides for spindle stop, flood coolant,
and optionally mist coolant
- Spindle stop: Enables and disables spindle during a feed hold.
Automatically restores last spindles state.
- Flood and mist coolant: Immediately toggles coolant state until
next toggle or g-code coolant command.
- Feature: Jogging mode! Incremental and absolute modes supported.
- Grbl accepts jogging-specific commands like $J=X100F50. An axis
word and feed rate are required. G20/21 and G90/G91 commands are
accepted.
- Jog motions can be canceled at any time by a feed hold `!`
command. The buffer is automatically flushed. (No resetting required).
- Jog motions do not alter the g-code parser state so GUIs don’t
have to track what they changed and correct it.
- Feature: Laser mode setting. Allows Grbl to execute continuous
motions with spindle speed and state changes.
- Feature: Significantly improved status reports. Overhauled to cram in
more meaningful data and still make it smaller on average.
- All available data is now sent by default, but does not appear if
it doesn’t change or is not active.
- Machine position(MPos) or work position(WPos) is reported but not
both at the same time. Instead, the work coordinate offsets (WCO)are
sent intermittently whenever it changes or refreshes after 10-30 status
reports. Position vectors are easily computed by WPos = MPos - WCO.
- All data has changed in some way. Details of changes are in the
markdown documents and wiki.
- Feature: 16 new realtime commands to control overrides. All in
extended-ASCII character space.
- While they are not easily typeable and requires a GUI, they can’t
be accidentally triggered by some latent character in the g-code
program and have tons of room for expansion.
- Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended
to the state, where `x` is an integer and indicates a substate.
- For example, each integer of a door state describes in what phase
the machine is in during parking. Substates are detailed in the
documentation.
- Feature: With the alarm codes, homing and probe alarms have been
expanded with more codes to provide more exact feedback on what caused
the alarm.
- Feature: New hard limit check upon power-up or reset. If detected, a
feedback message to check the limit switches sent immediately after the
welcome message.
- May be disabled in config.h.
- OEM feature: Enable/disable `$RST=` individual commands based on
desired behavior in config.h.
- OEM feature: Configurable EEPROM wipe to prevent certain data from
being deleted during firmware upgrade to a new settings version or
`RST=*` command.
- OEM feature: Enable/disable the `$I=` build info write string with
external EEPROM write example sketch.
- This prevents a user from altering the build info string in
EEPROM. This requires the vendor to write the string to EEPROM via
external means. An Arduino example sketch is provided to accomplish
this. This would be useful for contain product data that is
retrievable.
- Tweak: All feedback has been drastically trimmed to free up flash
space for the v1.0 release.
- The `$` help message is just one string, listing available
commands.
- The `$$` settings printout no longer includes descriptions. Only
the setting values. (Sorry it’s this or remove overrides!)
- Grbl `error:` and `ALARM:` responses now only contain codes. No
descriptions. All codes are explained in documentation.
- Grbl’s old feedback style may be restored via a config.h, but
keep in mind that it will likely not fit into the Arduino’s flash space.
- Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code
command needs to update and write a value to EEPROM or changes the work
coordinate offset.
- This addresses two old issues in all prior Grbl versions. First,
an EEPROM write requires interrupts to be disabled, including stepper
and serial comm. Steps can be lost and data can be corrupted. Second,
the work position may not be correlated to the actual machine position,
since machine position is derived from the actual current execution
state, while work position is based on the g-code parser offset state.
They are usually not in sync and the parser state is several motions
behind. This forced sync ensures work and machine positions are always
correct.
- This behavior can be disabled through a config.h option, but it’s
not recommended to do so.
- Tweak: To make status reports standardized, users can no longer
change what is reported via status report mask, except for only
toggling machine or work positions.
- All other data fields are included in the report and can only be
disabled through the config.h file. It’s not recommended to alter this,
because GUIs will be expecting this data to be present and may not be
compatible.
- Tweak: Homing cycle and parking motion no longer report a negative
line number in a status report. These will now not report a line number
at all.
- Tweak: New `[Restoring spindle]` message when restoring from a
spindle stop override. Provides feedback what Grbl is doing while the
spindle is powering up and a 4.0 second delay is enforced.
- Tweak: Override values are reset to 100% upon M2/30. This behavior
can be disabled in config.h
- Tweak: The planner buffer size has been reduced from 18 to 16 to free
up RAM for tracking and controlling overrides.
- Tweak: TX buffer size has been increased from 64 to 90 bytes to
improve status reporting and overall performance.
- Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t
affect Grbl’s overall operation by doing so.
- Tweak: Grbl’s serial buffer increased by +1 internally, such that 128
bytes means 128, not 127 due to the ring buffer implementation. Long
overdue.
- Tweak: Altered sys.alarm variable to be set by alarm codes, rather
than bit flags. Simplified how it worked overall.
- Tweak: Planner buffer and serial RX buffer usage has been combined in
the status reports.
- Tweak: Pin state reporting has been refactored to report only the
pins “triggered” and nothing when not “triggered”.
- Tweak: Current machine rate or speed is now included in every report.
- Tweak: The work coordinate offset (WCO) and override states only need
to be refreshed intermittently or reported when they change. The
refresh rates may be altered for each in the config.h file with
different idle and busy rates to lessen Grbl’s load during a job.
- Tweak: For temporary compatibility to existing GUIs until they are
updated, an option to revert back to the old style status reports is
available in config.h, but not recommended for long term use.
- Tweak: Removed old limit pin state reporting option from config.h in
lieu of new status report that includes them.
- Tweak: Updated the defaults.h file to include laser mode, altered
status report mask, and fix an issue with a missing invert probe pin
default.
- Refactor: Changed how planner line data is generated and passed to
the planner and onto the step generator. By making it a struct
variable, this saved significant flash space.
- Refactor: Major re-factoring of the planner to incorporate override
values and allow for re-calculations fast enough to immediately take
effect during operation. No small feat.
- Refactor: Re-factored the step segment generator for re-computing new
override states.
- Refactor: Re-factored spindle_control.c to accommodate the spindle
speed overrides and laser mode.
- Refactor: Re-factored parts of the codebase for a new jogging mode.
Still under development though and slated to be part of the official
v1.0 release. Hang tight.
- Refactor: Created functions for computing a unit vector and value
limiting based on axis maximums to free up more flash.
- Refactor: The spindle PWM is now set directly inside of the stepper
ISR as it loads new step segments.
- Refactor: Moved machine travel checks out of soft limits function
into its own since jogging uses this too.
- Refactor: Removed coolant_stop() and combined with
coolant_set_state().
- Refactor: The serial RX ISR forks off extended ASCII values to
quickly assess the new override realtime commands.
- Refactor: Altered some names of the step control flags.
- Refactor: Improved efficiency of the serial RX get buffer count
function.
- Refactor: Saved significant flash by removing and combining print
functions. Namely the uint8 base10 and base2 functions.
- Refactor: Moved the probe state check in the main stepper ISR to
improve its efficiency.
- Refactor: Single character printPgmStrings() went converted to direct
serial_write() commands to save significant flash space.
- Documentation: Detailed Markdown documents on error codes, alarm
codes, messages, new real-time commands, new status reports, and how
jogging works. More to come later and will be posted on the Wiki as
well.
- Documentation: CSV files for quick importing of Grbl error and alarm
codes.
- Bug Fix: Applied v0.9 master fixes to CoreXY homing.
- Bug Fix: The print float function would cause Grbl to crash if a
value was 1e6 or greater. Increased the buffer by 3 bytes to help
prevent this in the future.
- Bug Fix: Build info and startup string EEPROM restoring was not
writing the checksum value.
- Bug Fix: Corrected an issue with safety door restoring the proper
spindle and coolant state. It worked before, but breaks with laser mode
that can continually change spindle state per planner block.
- Bug Fix: Move system position and probe position arrays out of the
system_t struct. Ran into some compiling errors that were hard to track
down as to why. Moving them out fixed it.
- Cleaned up the limit pin state reporting option to display only the
state per axis, rather than the whole port. It’s organized by an XYZ
order, 0(low)-1(high), and generally looks like `Lim:001`.
- Separated the control pin state reporting from limit state reporting
as a new compile option. This stayed the same in terms of showing the
entire port in binary, since it’s not anticipated that this will be
used much, if at all.
- Updated some of the gcode source comments regarding supported g-codes.
- G91.1 support added. This g-code sets the arc IJK distance mode to
incremental, which is the default already. This simply helps reduce
parsing errors with certain CAM programs that output this command.
- Max step rate checks weren’t being compiled in if the option was
enabled. Fixed now.
- Alarm codes were not displaying correctly when GUI reporting mode was
enabled. Due to unsigned int problem. Changed codes to positive values
since they aren’t shared with other codes.
- Homing cycle failure reports alarm feedback when the homing cycle is
exited via a reset, interrupted by a safety door switch, or does not
find the limit switch.
- Homing cycle bug fix when not finding the limit switch. It would just
idle before, but now will exit with an alarm.
- Licensing update. Corrected licensing according to lawyer
recommendations. Removed references to other Grbl versions.
- Re-organized source code files into a ‘grbl’ directory to lessen one
step in compiling Grbl through the Arduino IDE.
- Added an ‘examples’ directory with an upload .INO sketch to further
simplify compiling and uploading Grbl via the Arduino IDE.
- Updated the Makefile with regard to the source code no longer being
in the root directory. All files generated by compiling is placed in a
separate ‘build’ directory to keep things tidy. The makefile should
operate in the same way as it did before.