diff --git a/gcode.c b/gcode.c index 309c240..762f030 100644 --- a/gcode.c +++ b/gcode.c @@ -89,7 +89,7 @@ struct ParserState { double position[3]; /* Where the interpreter considers the tool to be at this point in the code */ uint8_t tool; int16_t spindle_speed; /* RPM/100 */ - uint8_t plane_axis_0, plane_axis_1; // The axes of the selected plane + uint8_t plane_axis_0, plane_axis_1, plane_axis_2; // The axes of the selected plane }; struct ParserState gc; @@ -103,21 +103,23 @@ int read_double(char *line, //!< string: line of RS274/NGC code being processed int next_statement(char *letter, double *double_ptr, char *line, int *counter); +void select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2) +{ + gc.plane_axis_0 = axis_0; + gc.plane_axis_1 = axis_1; + gc.plane_axis_2 = axis_2; +} + void gc_init() { memset(&gc, 0, sizeof(gc)); gc.feed_rate = DEFAULT_FEEDRATE; - gc.plane_axis_0 = X_AXIS; gc.plane_axis_1 = Y_AXIS; + select_plane(X_AXIS, Y_AXIS, Z_AXIS); } inline float to_millimeters(double value) { return(gc.inches_mode ? value * INCHES_PER_MM : value); } -void select_plane(uint8_t axis_0, uint8_t axis_1) -{ - gc.plane_axis_0 = axis_0; - gc.plane_axis_1 = axis_1; -} // Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase // characters and signed floats (no whitespace). @@ -159,9 +161,9 @@ uint8_t gc_execute_line(char *line) { case 2: gc.motion_mode = MOTION_MODE_CW_ARC; break; case 3: gc.motion_mode = MOTION_MODE_CCW_ARC; break; case 4: next_action = NEXT_ACTION_DWELL; break; - case 17: select_plane(X_AXIS, Y_AXIS); break; - case 18: select_plane(X_AXIS, Z_AXIS); break; - case 19: select_plane(Y_AXIS, Z_AXIS); break; + case 17: select_plane(X_AXIS, Y_AXIS, Z_AXIS); break; + case 18: select_plane(X_AXIS, Z_AXIS, Y_AXIS); break; + case 19: select_plane(Y_AXIS, Z_AXIS, X_AXIS); break; case 20: gc.inches_mode = true; break; case 21: gc.inches_mode = false; break; case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break; @@ -306,6 +308,7 @@ uint8_t gc_execute_line(char *line) { // Calculate the change in position along each selected axis double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0]; double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1]; + clear_vector(&offset); double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d) // If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any @@ -371,8 +374,14 @@ uint8_t gc_execute_line(char *line) { } // Find the radius double radius = hypot(offset[gc.plane_axis_0], offset[gc.plane_axis_1]); + // Calculate the motion along the depth axis of the helix + double depth = target[gc.plane_axis_2]-gc.position[gc.plane_axis_2]; // Trace the arc - mc_arc(theta_start, angular_travel, radius, gc.plane_axis_0, gc.plane_axis_1, gc.feed_rate); + if (gc.inverse_feed_rate_mode) { + mc_arc(theta_start, angular_travel, radius, depth, gc.plane_axis_0, gc.plane_axis_1, gc.plane_axis_2, inverse_feed_rate, true); + } else { + mc_arc(theta_start, angular_travel, radius, depth, gc.plane_axis_0, gc.plane_axis_1, gc.plane_axis_2, gc.feed_rate, false); + } break; } } diff --git a/gcode.h b/gcode.h index 52f2763..aada2f9 100644 --- a/gcode.h +++ b/gcode.h @@ -37,6 +37,6 @@ void gc_init(); uint8_t gc_execute_line(char *line); // get the current logical position (in current units), the current status code and the unit mode -void gc_get_status(double *position, uint8_t *status_code, int *inches_mode, uint32_t *line_number); +void gc_get_status(double *position_, uint8_t *status_code_, int *inches_mode_, uint32_t *line_number_); #endif diff --git a/motion_control.c b/motion_control.c index 410ec0c..d9e73c5 100644 --- a/motion_control.c +++ b/motion_control.c @@ -63,8 +63,21 @@ void mc_dwell(uint32_t milliseconds) mode = MC_MODE_AT_REST; } +// Calculate the microseconds between steps that we should wait in order to travel the +// designated amount of millimeters in the amount of steps we are going to generate +void set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) { + int32_t pace; + if (invert) { + pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps); + } else { + pace = round(((millimeters_of_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps); + } + st_buffer_pace(pace); +} + // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second -// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement. +// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in +// 1/feed_rate minutes. void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate) { // Flags to keep track of which axes to step @@ -74,14 +87,13 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate int32_t target[3], // The target position in absolute steps step_count[3], // Absolute steps of travel along each axis counter[3], // A counter used in the bresenham algorithm for line plotting - maximum_steps; // The larges absolute step-count of any axis - + maximum_steps; // The larges absolute step-count of any axis // Setup --------------------------------------------------------------------------------------------------- target[X_AXIS] = x*X_STEPS_PER_MM; target[Y_AXIS] = y*Y_STEPS_PER_MM; - target[Z_AXIS] = z*Z_STEPS_PER_MM; + target[Z_AXIS] = z*Z_STEPS_PER_MM; // Determine direction and travel magnitude for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { step_count[axis] = abs(target[axis] - position[axis]); @@ -98,25 +110,20 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate } // Set our direction pins set_stepper_directions(direction); - // Calculate the microseconds we need to wait between each step to achieve the desired feed rate - if (invert_feed_rate) { - st_buffer_pace((feed_rate*1000000)/maximum_steps); - } else { - // Ask old Phytagoras to estimate how many mm our next move is going to take us: - double millimeters_to_travel = - sqrt(pow(X_STEPS_PER_MM*step_count[X_AXIS],2) + - pow(Y_STEPS_PER_MM*step_count[Y_AXIS],2) + - pow(Z_STEPS_PER_MM*step_count[Z_AXIS],2)); - // Calculate the microseconds between steps that we should wait in order to travel the - // designated amount of millimeters in the amount of steps we are going to generate - st_buffer_pace(((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / maximum_steps); - } + + // Ask old Phytagoras to estimate how many mm our next move is going to take us + double millimeters_of_travel = + sqrt(pow(X_STEPS_PER_MM*step_count[X_AXIS],2) + + pow(Y_STEPS_PER_MM*step_count[Y_AXIS],2) + + pow(Z_STEPS_PER_MM*step_count[Z_AXIS],2)); + // And set the step pace + set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate); // Execution ----------------------------------------------------------------------------------------------- mode = MC_MODE_LINEAR; - while(mode) { + do { // Trace the line step_bits = 0; for(axis = X_AXIS; axis <= Z_AXIS; axis++) { @@ -131,23 +138,23 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate } } } - if (step_bits) { - step_steppers(step_bits); - } else { - mode = MC_MODE_AT_REST; - } - } + if(step_bits) { step_steppers(step_bits); } + } while (step_bits); + mode = MC_MODE_AT_REST; } // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the -// circle in millimeters. axis_1 and axis_2 selects the plane in tool space. +// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining +// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. -void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate) +void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, + int axis_linear, double feed_rate, int invert_feed_rate) { - uint32_t start_x, start_y; - uint32_t diagonal_error; + uint32_t start_x, start_y; // The start position in the coordinate system local to the circle + uint32_t diagonal_error; // A variable to keep track of varations in the error-value during + // the tracing of the arc int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1) int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise @@ -156,19 +163,13 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int // center of the arc. int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed int32_t error; // error is always == (x**2 + y**2 - radius**2), - uint8_t axis_x, axis_y; // maps the arc axes to stepper axes - int8_t diagonal_bits; // A bitmask with the stepper bits for both selected axes set - int incomplete; // True if the arc has not reached its target yet - - int dx, dy; // Trace directions - // Setup - - uint32_t radius_steps = round(radius*X_STEPS_PER_MM); - if(radius_steps == 0) { return; } + int dx, dy; // Trace directions // Setup arc interpolation -------------------------------------------------------------------------------- + uint32_t radius_steps = round(radius*X_STEPS_PER_MM); + if(radius_steps == 0) { return; } // Determine angular direction (+1 = clockwise, -1 = counterclockwise) angular_direction = signof(angular_travel); // Calculate the initial position and target position in the local coordinate system of the arc @@ -183,12 +184,6 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int // <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we // are exactly on top of the arc. error = x*x + y*y - radius_steps*radius_steps; - // Set up a vector with the steppers we are going to use tracing the plane of this arc - diagonal_bits = st_bit_for_stepper(axis_1); - diagonal_bits |= st_bit_for_stepper(axis_2); - // And map the local coordinate system of the arc onto the tool axes of the selected plane - axis_x = axis_1; - axis_y = axis_2; // Estimate length of arc in steps ------------------------------------------------------------------------- @@ -210,95 +205,126 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int +---- 2 ----+ */ + // Find the quadrants of the starting point and the target int start_quadrant = quadrant_of_the_circle(start_x, start_y); int target_quadrant = quadrant_of_the_circle(target_x, target_y); - uint32_t steps_to_travel=0; - // Is the start and target point in the same quadrant? + uint32_t arc_steps=0; + // Will this whole arc take place within the same quadrant? if (start_quadrant == target_quadrant && (abs(angular_travel) <= (M_PI/2))) { if(quadrant_horizontal(start_quadrant)) { // a horizontal quadrant where x will be the primary direction - steps_to_travel = abs(target_x-start_x); + arc_steps = abs(target_x-start_x); } else { // a vertical quadrant where y will be the primary direction - steps_to_travel = abs(target_y-start_y); + arc_steps = abs(target_y-start_y); } } else { // the start and target points are in different quadrants - // Lets estimate the amount of steps along one full quadrant + // Lets estimate the amount of steps along half a quadrant uint32_t steps_in_half_quadrant = ceil(radius_steps/sqrt(2)); // Add the steps in the first partial quadrant - steps_to_travel += steps_in_partial_quadrant(start_x, start_y, + arc_steps += steps_in_partial_quadrant(start_x, start_y, start_quadrant, angular_direction, steps_in_half_quadrant); // Count the number of full quadrants between the start and end quadrants uint8_t full_quadrants_traveled = full_quadrants_between(start_quadrant, target_quadrant, angular_direction); // Add steps for the full quadrants plus some stray steps for "corners" - steps_to_travel += full_quadrants_traveled*(steps_in_half_quadrant*2+1); + arc_steps += full_quadrants_traveled*(steps_in_half_quadrant*2+1); // Add the steps in the final partial quadrant. By inverting the angular direction we get the correct number for // the target quadrant which steps through the opposite part of the quadrant with respect to the start quadrant. - steps_to_travel += steps_in_partial_quadrant(target_x, target_y, + arc_steps += steps_in_partial_quadrant(target_x, target_y, target_quadrant, -angular_direction, steps_in_half_quadrant); } + // Set up the linear interpolation of the "depth" axis ----------------------------------------------------- + + int32_t linear_steps = abs(st_millimeters_to_steps(linear_travel, axis_linear)); + int linear_direction = signof(linear_travel); + // The number of steppings needed to trace this motion is equal to the motion that require the maximum + // amount of steps: the arc or the line: + int32_t maximum_steps = max(linear_steps, arc_steps); + // Initialize the counters to do linear bresenham + int32_t linear_counter = -maximum_steps/2; + int32_t arc_counter = -maximum_steps/2; + // Calculate feed rate ------------------------------------------------------------------------------------- - // The amount of steppings performed while tracing a half circle is equal to the sum of sides in a - // square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a half circle: - uint32_t steps_in_half_circle = round((4*radius_steps)/sqrt(2)); - // We then calculate the millimeters of travel along the circumference of that same half circle - double millimeters_half_circumference = radius*M_PI; + // We then calculate the millimeters of helical travel + double millimeters_of_travel = sqrt(pow(angular_travel*radius,2)+pow(abs(linear_travel),2)); // Then we calculate the microseconds between each step as if we will trace the full circle. // It doesn't matter what fraction of the circle we are actually going to trace. The pace is the same. - st_buffer_pace(((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle); + set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate); // Execution ----------------------------------------------------------------------------------------------- mode = MC_MODE_ARC; + direction[axis_linear] = linear_direction; + uint8_t axis_1_bit = st_bit_for_stepper(axis_1); + uint8_t axis_2_bit = st_bit_for_stepper(axis_2); + uint8_t axis_linear_bit = st_bit_for_stepper(axis_linear); + uint8_t diagonal_bits = (axis_1_bit | axis_2_bit); - incomplete = true; - while(incomplete) + uint8_t step_bits; + + while(mode) { - dx = (y!=0) ? signof(y) * angular_direction : -signof(x); - dy = (x!=0) ? -signof(x) * angular_direction : -signof(y); - // Take dx and dy which are local to the arc being generated and map them on to the - // selected tool-space-axes for the current arc. - direction[axis_x] = dx; - direction[axis_y] = dy; - set_stepper_directions(direction); - // Check which axis will be "major" for this stepping - if (abs(x)= abs(diagonal_error)) { - y += dy; - error = diagonal_error; - step_steppers(diagonal_bits); // step diagonal - } else { - step_axis(axis_x); // step straight - } - } else { - // Step arc vertically - error += 1 + 2*y * dy; - y+=dy; - diagonal_error = error + 1 + 2*x * dx; - if(abs(error) >= abs(diagonal_error)) { - x += dx; - error = diagonal_error; - step_steppers(diagonal_bits); // step diagonal - } else { - step_axis(axis_y); // step straight + // reset step bits + step_bits = 0; + // Do linear interpolation + linear_counter += linear_steps; + if (linear_counter > 0) { + linear_counter -= maximum_steps; + step_bits |= axis_linear_bit; + } + // Do arc interpolation + arc_counter += arc_steps; + if (arc_counter > 0) { + arc_counter -= maximum_steps; + // Determine directions for each axis at this point in the arc + dx = (y!=0) ? signof(y) * angular_direction : -signof(x); + dy = (x!=0) ? -signof(x) * angular_direction : -signof(y); + // Take dx and dy which are local to the arc being generated and map them on to the + // selected tool-space-axes for the current arc. + direction[axis_1] = dx; + direction[axis_2] = dy; + // Check which axis will be "major" for this stepping + if (abs(x)= abs(diagonal_error)) { + y += dy; + error = diagonal_error; + step_bits |= diagonal_bits; // step diagonal + } else { + step_bits |= axis_1_bit; // step straight + } + } else { + // Y is major: Step arc vertically + error += 1 + 2*y * dy; + y+=dy; + diagonal_error = error + 1 + 2*x * dx; + if(abs(error) >= abs(diagonal_error)) { + x += dx; + error = diagonal_error; + step_bits |= diagonal_bits; // step diagonal + } else { + step_bits |= axis_2_bit; // step straight + } } } + set_stepper_directions(direction); + step_steppers(step_bits); + // Check if target has been reached. Todo: Simplify/optimize/clarify if ((x * target_direction_y >= target_x * target_direction_y) && (y * target_direction_x <= target_y * target_direction_x)) { if ((signof(x) == signof(target_x)) && (signof(y) == signof(target_y))) - { incomplete = false; } } + { mode = MC_MODE_AT_REST; } } } // Update the tool position to the new actual position - position[axis_x] += x-start_x; - position[axis_y] += y-start_y; - mode = MC_MODE_AT_REST; + position[axis_1] += x-start_x; + position[axis_2] += y-start_y; + position[axis_2] += linear_steps*linear_direction; } void mc_go_home() diff --git a/motion_control.h b/motion_control.h index 3a950e6..5927d9c 100644 --- a/motion_control.h +++ b/motion_control.h @@ -32,28 +32,26 @@ // Initializes the motion_control subsystem resources void mc_init(); -// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second -// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement. +// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second +// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in +// 1/feed_rate minutes. void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate); // Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // circle in millimeters. axis_1 and axis_2 selects the plane in tool space. // Known issue: This method pretends that all axes uses the same steps/mm as the X axis. Which might -// not be the case ... (To be continued) -void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate); +// not be the case ... (To be continued) +// Regarding feed rate see note on mc_line. +void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, + int axis_linear, double feed_rate, int invert_feed_rate); -// Prepare linear motion relative to the current position. +// Dwell for a couple of time units void mc_dwell(uint32_t milliseconds); -// Prepare to send the tool position home +// Send the tool home void mc_go_home(); -// Start the prepared operation. In the current implementation this will block for most of the task at hand. -// In future implementations it might not block at all. If you want to make sure the system has reached -// quiescence call mc_wait() -void mc_execute(); - // Check motion control status. result == 0: the system is idle. result > 0: the system is busy, // result < 0: the system is in an error state. int mc_status(); diff --git a/stepper.c b/stepper.c index 2ee5713..e29e1e2 100644 --- a/stepper.c +++ b/stepper.c @@ -24,6 +24,7 @@ #include "stepper.h" #include "config.h" +#include #include "nuts_bolts.h" #include @@ -286,3 +287,13 @@ void st_set_echo(int value) { echo_steps = value; } + +// Convert from millimeters to step-counts along the designated axis +int32_t st_millimeters_to_steps(double millimeters, int axis) { + switch(axis) { + case X_AXIS: return(round(millimeters*X_STEPS_PER_MM)); + case Y_AXIS: return(round(millimeters*Y_STEPS_PER_MM)); + case Z_AXIS: return(round(millimeters*Z_STEPS_PER_MM)); + } + return(0); +} diff --git a/stepper.h b/stepper.h index 61678a9..b68cb11 100644 --- a/stepper.h +++ b/stepper.h @@ -62,4 +62,7 @@ void st_go_home(); // Echo steps to serial port? (true/false) void st_set_echo(int value); +// Convert from millimeters to step-counts along the designated axis +int32_t st_millimeters_to_steps(double millimeters, int axis); + #endif