New report module. 6 persistent work coordinates. New G-codes and settings. README and minor bug updates

(NOTE: This push is likely buggy so proceed with caution. Just
uploading to let people know where we're going.)

- New report.c module. Moved all feedback functions into this module to
centralize these processes. Includes realtime status reports, status
messages, feedback messages.

- Official support 6 work coordinate systems (G54-G59), which are
persistently held in EEPROM memory.

- New g-code support: G28.1, G30.1 stores current machine position as a
home position into EEPROM. G10 L20 Px stores current machine position
into work coordinates without needing to explicitly send XYZ words.

- Homing performed with '$H' command. G28/G30 no longer start the
homing cycle. This is how it's supposed to be.

- New settings: Stepper enable invert and n_arc correction installed.

- Updated and changed up some limits and homing functionality. Pull-off
travel will now move after the homing cycle regardless of hard limits
enabled. Fixed direction of pull-off travel (went wrong way).

- Started on designing an internal Grbl command protocol based on the
'$' settings letter. Commands with non numeric characters after '$'
will perform switch commands, homing cycle, jogging, printing
paramters, etc. Much more to do here.

- Updated README to reflect all of the new features.
This commit is contained in:
Sonny Jeon
2012-11-01 09:37:27 -06:00
parent 5d8c3dcbd7
commit e0a9054e32
17 changed files with 847 additions and 621 deletions

View File

@ -29,10 +29,14 @@
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)) // All direction bits
#define STEPPING_MASK (STEP_MASK | DIRECTION_MASK) // All stepping-related bits (step/direction)
#define STEPPERS_DISABLE_MASK (1<<STEPPERS_DISABLE_BIT)
// Initialize and setup the stepper motor subsystem
void st_init();
// Enable steppers, but cycle does not start unless called by motion control or runtime command.
void st_wake_up();
// Immediately disables steppers
void st_go_idle();