New report module. 6 persistent work coordinates. New G-codes and settings. README and minor bug updates

(NOTE: This push is likely buggy so proceed with caution. Just
uploading to let people know where we're going.)

- New report.c module. Moved all feedback functions into this module to
centralize these processes. Includes realtime status reports, status
messages, feedback messages.

- Official support 6 work coordinate systems (G54-G59), which are
persistently held in EEPROM memory.

- New g-code support: G28.1, G30.1 stores current machine position as a
home position into EEPROM. G10 L20 Px stores current machine position
into work coordinates without needing to explicitly send XYZ words.

- Homing performed with '$H' command. G28/G30 no longer start the
homing cycle. This is how it's supposed to be.

- New settings: Stepper enable invert and n_arc correction installed.

- Updated and changed up some limits and homing functionality. Pull-off
travel will now move after the homing cycle regardless of hard limits
enabled. Fixed direction of pull-off travel (went wrong way).

- Started on designing an internal Grbl command protocol based on the
'$' settings letter. Commands with non numeric characters after '$'
will perform switch commands, homing cycle, jogging, printing
paramters, etc. Much more to do here.

- Updated README to reflect all of the new features.
This commit is contained in:
Sonny Jeon
2012-11-01 09:37:27 -06:00
parent 5d8c3dcbd7
commit e0a9054e32
17 changed files with 847 additions and 621 deletions

View File

@ -84,25 +84,32 @@ static volatile uint8_t busy; // True when SIG_OUTPUT_COMPARE1A is being servi
static void set_step_events_per_minute(uint32_t steps_per_minute);
// Stepper state initialization
static void st_wake_up()
// Stepper state initialization. Cycle should only start if the st.cycle_start flag is
// enabled. Startup init and limits call this function but shouldn't start the cycle.
void st_wake_up()
{
// Initialize stepper output bits
out_bits = (0) ^ (settings.invert_mask);
// Initialize step pulse timing from settings. Here to ensure updating after re-writing.
#ifdef STEP_PULSE_DELAY
// Set total step pulse time after direction pin set. Ad hoc computation from oscilloscope.
step_pulse_time = -(((settings.pulse_microseconds+STEP_PULSE_DELAY-2)*TICKS_PER_MICROSECOND) >> 3);
// Set delay between direction pin write and step command.
OCR2A = -(((settings.pulse_microseconds)*TICKS_PER_MICROSECOND) >> 3);
#else // Normal operation
// Set step pulse time. Ad hoc computation from oscilloscope. Uses two's complement.
step_pulse_time = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND) >> 3);
#endif
// Enable steppers by resetting the stepper disable port
STEPPERS_DISABLE_PORT &= ~(1<<STEPPERS_DISABLE_BIT);
// Enable stepper driver interrupt
TIMSK1 |= (1<<OCIE1A);
if (bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE)) {
STEPPERS_DISABLE_PORT |= (1<<STEPPERS_DISABLE_BIT);
} else {
STEPPERS_DISABLE_PORT &= ~(1<<STEPPERS_DISABLE_BIT);
}
if (sys.cycle_start) {
// Initialize stepper output bits
out_bits = (0) ^ (settings.invert_mask);
// Initialize step pulse timing from settings. Here to ensure updating after re-writing.
#ifdef STEP_PULSE_DELAY
// Set total step pulse time after direction pin set. Ad hoc computation from oscilloscope.
step_pulse_time = -(((settings.pulse_microseconds+STEP_PULSE_DELAY-2)*TICKS_PER_MICROSECOND) >> 3);
// Set delay between direction pin write and step command.
OCR2A = -(((settings.pulse_microseconds)*TICKS_PER_MICROSECOND) >> 3);
#else // Normal operation
// Set step pulse time. Ad hoc computation from oscilloscope. Uses two's complement.
step_pulse_time = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND) >> 3);
#endif
// Enable stepper driver interrupt
TIMSK1 |= (1<<OCIE1A);
}
}
// Stepper shutdown
@ -110,12 +117,16 @@ void st_go_idle()
{
// Disable stepper driver interrupt
TIMSK1 &= ~(1<<OCIE1A);
// Force stepper dwell to lock axes for a defined amount of time to ensure the axes come to a complete
// stop and not drift from residual inertial forces at the end of the last movement.
delay_ms(settings.stepper_idle_lock_time);
// Disable steppers only upon system alarm activated or by user setting to not be kept enabled.
if ((settings.stepper_idle_lock_time != 0xff) || bit_istrue(sys.execute,EXEC_ALARM)) {
STEPPERS_DISABLE_PORT |= (1<<STEPPERS_DISABLE_BIT);
// Force stepper dwell to lock axes for a defined amount of time to ensure the axes come to a complete
// stop and not drift from residual inertial forces at the end of the last movement.
delay_ms(settings.stepper_idle_lock_time);
if (bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE)) {
STEPPERS_DISABLE_PORT &= ~(1<<STEPPERS_DISABLE_BIT);
} else {
STEPPERS_DISABLE_PORT |= (1<<STEPPERS_DISABLE_BIT);
}
}
}
@ -362,7 +373,8 @@ void st_init()
TIMSK2 |= (1<<OCIE2A); // Enable Timer2 Compare Match A interrupt
#endif
// Start in the idle state
// Start in the idle state, but first wake up to check for keep steppers enabled option.
st_wake_up();
st_go_idle();
}
@ -414,12 +426,16 @@ static void set_step_events_per_minute(uint32_t steps_per_minute)
// Planner external interface to start stepper interrupt and execute the blocks in queue. Called
// by the main program functions: planner auto-start and run-time command execution.
// TODO: Update sys.cycle_start and feed_hold variables to a sys.state variable. This state
// variable will manage all of Grbl's processes and keep them separate.
void st_cycle_start()
{
if (!sys.cycle_start) {
if (!sys.feed_hold) {
sys.cycle_start = true;
st_wake_up();
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
sys.cycle_start = true; // Only place this variable is set true.
st_wake_up();
}
}
}
}