Merge pull request #706 from grbl/edge

Merge edge branch.
This commit is contained in:
Sonny Jeon 2015-05-26 10:42:03 -06:00
commit d13f741f7d
28 changed files with 1186 additions and 664 deletions

View File

@ -0,0 +1,137 @@
/*
cpu_map_atmega2560.h - CPU and pin mapping configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* This cpu_map file serves as a central pin mapping settings file for AVR Mega 2560 */
#ifdef GRBL_PLATFORM
#error "cpu_map already defined: GRBL_PLATFORM=" GRBL_PLATFORM
#endif
#define GRBL_PLATFORM "Atmega2560"
// Serial port pins
#define SERIAL_RX USART0_RX_vect
#define SERIAL_UDRE USART0_UDRE_vect
// Increase Buffers to make use of extra SRAM
//#define RX_BUFFER_SIZE 256
//#define TX_BUFFER_SIZE 128
//#define BLOCK_BUFFER_SIZE 36
//#define LINE_BUFFER_SIZE 100
// Define step pulse output pins. NOTE: All step bit pins must be on the same port.
#define STEP_DDR DDRA
#define STEP_PORT PORTA
#define STEP_PIN PINA
#define X_STEP_BIT 2 // MEGA2560 Digital Pin 24
#define Y_STEP_BIT 3 // MEGA2560 Digital Pin 25
#define Z_STEP_BIT 4 // MEGA2560 Digital Pin 26
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
// Define step direction output pins. NOTE: All direction pins must be on the same port.
#define DIRECTION_DDR DDRC
#define DIRECTION_PORT PORTC
#define DIRECTION_PIN PINC
#define X_DIRECTION_BIT 7 // MEGA2560 Digital Pin 30
#define Y_DIRECTION_BIT 6 // MEGA2560 Digital Pin 31
#define Z_DIRECTION_BIT 5 // MEGA2560 Digital Pin 32
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)) // All direction bits
// Define stepper driver enable/disable output pin.
#define STEPPERS_DISABLE_DDR DDRB
#define STEPPERS_DISABLE_PORT PORTB
#define STEPPERS_DISABLE_BIT 7 // MEGA2560 Digital Pin 13
#define STEPPERS_DISABLE_MASK (1<<STEPPERS_DISABLE_BIT)
// Define homing/hard limit switch input pins and limit interrupt vectors.
// NOTE: All limit bit pins must be on the same port
#define LIMIT_DDR DDRB
#define LIMIT_PORT PORTB
#define LIMIT_PIN PINB
#define X_LIMIT_BIT 4 // MEGA2560 Digital Pin 10
#define Y_LIMIT_BIT 5 // MEGA2560 Digital Pin 11
#define Z_LIMIT_BIT 6 // MEGA2560 Digital Pin 12
#define LIMIT_INT PCIE0 // Pin change interrupt enable pin
#define LIMIT_INT_vect PCINT0_vect
#define LIMIT_PCMSK PCMSK0 // Pin change interrupt register
#define LIMIT_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)|(1<<Z_LIMIT_BIT)) // All limit bits
// Define spindle enable and spindle direction output pins.
#define SPINDLE_ENABLE_DDR DDRH
#define SPINDLE_ENABLE_PORT PORTH
#define SPINDLE_ENABLE_BIT 3 // MEGA2560 Digital Pin 6
#define SPINDLE_DIRECTION_DDR DDRE
#define SPINDLE_DIRECTION_PORT PORTE
#define SPINDLE_DIRECTION_BIT 3 // MEGA2560 Digital Pin 5
// Define flood and mist coolant enable output pins.
// NOTE: Uno analog pins 4 and 5 are reserved for an i2c interface, and may be installed at
// a later date if flash and memory space allows.
#define COOLANT_FLOOD_DDR DDRH
#define COOLANT_FLOOD_PORT PORTH
#define COOLANT_FLOOD_BIT 5 // MEGA2560 Digital Pin 8
#ifdef ENABLE_M7 // Mist coolant disabled by default. See config.h to enable/disable.
#define COOLANT_MIST_DDR DDRH
#define COOLANT_MIST_PORT PORTH
#define COOLANT_MIST_BIT 6 // MEGA2560 Digital Pin 9
#endif
// Define user-control CONTROLs (cycle start, reset, feed hold) input pins.
// NOTE: All CONTROLs pins must be on the same port and not on a port with other input pins (limits).
#define CONTROL_DDR DDRK
#define CONTROL_PIN PINK
#define CONTROL_PORT PORTK
#define RESET_BIT 0 // MEGA2560 Analog Pin 8
#define FEED_HOLD_BIT 1 // MEGA2560 Analog Pin 9
#define CYCLE_START_BIT 2 // MEGA2560 Analog Pin 10
#define SAFETY_DOOR_BIT 3 // MEGA2560 Analog Pin 11
#define CONTROL_INT PCIE2 // Pin change interrupt enable pin
#define CONTROL_INT_vect PCINT2_vect
#define CONTROL_PCMSK PCMSK2 // Pin change interrupt register
#define CONTROL_MASK ((1<<RESET_BIT)|(1<<FEED_HOLD_BIT)|(1<<CYCLE_START_BIT)|(1<<SAFETY_DOOR_BIT))
// Define probe switch input pin.
#define PROBE_DDR DDRK
#define PROBE_PIN PINK
#define PROBE_PORT PORTK
#define PROBE_BIT 7 // MEGA2560 Analog Pin 15
#define PROBE_MASK (1<<PROBE_BIT)
// Start of PWM & Stepper Enabled Spindle
#ifdef VARIABLE_SPINDLE
// Advanced Configuration Below You should not need to touch these variables
// Set Timer up to use TIMER4B which is attached to Digital Pin 7
#define PWM_MAX_VALUE 65535.0
#define TCCRA_REGISTER TCCR4A
#define TCCRB_REGISTER TCCR4B
#define OCR_REGISTER OCR4B
#define COMB_BIT COM4B1
#define WAVE0_REGISTER WGM40
#define WAVE1_REGISTER WGM41
#define WAVE2_REGISTER WGM42
#define WAVE3_REGISTER WGM43
#define SPINDLE_PWM_DDR DDRH
#define SPINDLE_PWM_PORT PORTH
#define SPINDLE_PWM_BIT 4 // MEGA2560 Digital Pin 97
#endif // End of VARIABLE_SPINDLE

View File

@ -0,0 +1,146 @@
/*
cpu_map_atmega328p.h - CPU and pin mapping configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* Grbl officially supports the Arduino Uno, but the other supplied pin mappings are
supplied by users, so your results may vary. This cpu_map file serves as a central
pin mapping settings file for AVR 328p used on the Arduino Uno. */
#ifdef GRBL_PLATFORM
#error "cpu_map already defined: GRBL_PLATFORM=" GRBL_PLATFORM
#endif
#define GRBL_PLATFORM "Atmega328p"
// Define serial port pins and interrupt vectors.
#define SERIAL_RX USART_RX_vect
#define SERIAL_UDRE USART_UDRE_vect
// Define step pulse output pins. NOTE: All step bit pins must be on the same port.
#define STEP_DDR DDRD
#define STEP_PORT PORTD
#define X_STEP_BIT 2 // Uno Digital Pin 2
#define Y_STEP_BIT 3 // Uno Digital Pin 3
#define Z_STEP_BIT 4 // Uno Digital Pin 4
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
// Define step direction output pins. NOTE: All direction pins must be on the same port.
#define DIRECTION_DDR DDRD
#define DIRECTION_PORT PORTD
#define X_DIRECTION_BIT 5 // Uno Digital Pin 5
#define Y_DIRECTION_BIT 6 // Uno Digital Pin 6
#define Z_DIRECTION_BIT 7 // Uno Digital Pin 7
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)) // All direction bits
// Define stepper driver enable/disable output pin.
#define STEPPERS_DISABLE_DDR DDRB
#define STEPPERS_DISABLE_PORT PORTB
#define STEPPERS_DISABLE_BIT 0 // Uno Digital Pin 8
#define STEPPERS_DISABLE_MASK (1<<STEPPERS_DISABLE_BIT)
// Define homing/hard limit switch input pins and limit interrupt vectors.
// NOTE: All limit bit pins must be on the same port, but not on a port with other input pins (CONTROL).
#define LIMIT_DDR DDRB
#define LIMIT_PIN PINB
#define LIMIT_PORT PORTB
#define X_LIMIT_BIT 1 // Uno Digital Pin 9
#define Y_LIMIT_BIT 2 // Uno Digital Pin 10
#ifdef VARIABLE_SPINDLE // Z Limit pin and spindle enabled swapped to access hardware PWM on Pin 11.
#define Z_LIMIT_BIT 4 // Uno Digital Pin 12
#else
#define Z_LIMIT_BIT 3 // Uno Digital Pin 11
#endif
#define LIMIT_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)|(1<<Z_LIMIT_BIT)) // All limit bits
#define LIMIT_INT PCIE0 // Pin change interrupt enable pin
#define LIMIT_INT_vect PCINT0_vect
#define LIMIT_PCMSK PCMSK0 // Pin change interrupt register
// Define spindle enable and spindle direction output pins.
#define SPINDLE_ENABLE_DDR DDRB
#define SPINDLE_ENABLE_PORT PORTB
// Z Limit pin and spindle PWM/enable pin swapped to access hardware PWM on Pin 11.
#ifdef VARIABLE_SPINDLE
#ifdef USE_SPINDLE_DIR_AS_ENABLE_PIN
// If enabled, spindle direction pin now used as spindle enable, while PWM remains on D11.
#define SPINDLE_ENABLE_BIT 5 // Uno Digital Pin 13 (NOTE: D13 can't be pulled-high input due to LED.)
#else
#define SPINDLE_ENABLE_BIT 3 // Uno Digital Pin 11
#endif
#else
#define SPINDLE_ENABLE_BIT 4 // Uno Digital Pin 12
#endif
#ifndef USE_SPINDLE_DIR_AS_ENABLE_PIN
#define SPINDLE_DIRECTION_DDR DDRB
#define SPINDLE_DIRECTION_PORT PORTB
#define SPINDLE_DIRECTION_BIT 5 // Uno Digital Pin 13 (NOTE: D13 can't be pulled-high input due to LED.)
#endif
// Define flood and mist coolant enable output pins.
// NOTE: Uno analog pins 4 and 5 are reserved for an i2c interface, and may be installed at
// a later date if flash and memory space allows.
#define COOLANT_FLOOD_DDR DDRC
#define COOLANT_FLOOD_PORT PORTC
#define COOLANT_FLOOD_BIT 3 // Uno Analog Pin 3
#ifdef ENABLE_M7 // Mist coolant disabled by default. See config.h to enable/disable.
#define COOLANT_MIST_DDR DDRC
#define COOLANT_MIST_PORT PORTC
#define COOLANT_MIST_BIT 4 // Uno Analog Pin 4
#endif
// Define user-control controls (cycle start, reset, feed hold) input pins.
// NOTE: All CONTROLs pins must be on the same port and not on a port with other input pins (limits).
#define CONTROL_DDR DDRC
#define CONTROL_PIN PINC
#define CONTROL_PORT PORTC
#define RESET_BIT 0 // Uno Analog Pin 0
#define FEED_HOLD_BIT 1 // Uno Analog Pin 1
#define CYCLE_START_BIT 2 // Uno Analog Pin 2
#define SAFETY_DOOR_BIT 1 // Uno Analog Pin 1 NOTE: Safety door is shared with feed hold. Enabled by config define.
#define CONTROL_INT PCIE1 // Pin change interrupt enable pin
#define CONTROL_INT_vect PCINT1_vect
#define CONTROL_PCMSK PCMSK1 // Pin change interrupt register
#define CONTROL_MASK ((1<<RESET_BIT)|(1<<FEED_HOLD_BIT)|(1<<CYCLE_START_BIT)|(1<<SAFETY_DOOR_BIT))
// Define probe switch input pin.
#define PROBE_DDR DDRC
#define PROBE_PIN PINC
#define PROBE_PORT PORTC
#define PROBE_BIT 5 // Uno Analog Pin 5
#define PROBE_MASK (1<<PROBE_BIT)
// Start of PWM & Stepper Enabled Spindle
#ifdef VARIABLE_SPINDLE
// Advanced Configuration Below You should not need to touch these variables
#define PWM_MAX_VALUE 255.0
#define TCCRA_REGISTER TCCR2A
#define TCCRB_REGISTER TCCR2B
#define OCR_REGISTER OCR2A
#define COMB_BIT COM2A1
#define WAVE0_REGISTER WGM20
#define WAVE1_REGISTER WGM21
#define WAVE2_REGISTER WGM22
#define WAVE3_REGISTER WGM23
// NOTE: On the 328p, these must be the same as the SPINDLE_ENABLE settings.
#define SPINDLE_PWM_DDR DDRB
#define SPINDLE_PWM_PORT PORTB
#define SPINDLE_PWM_BIT 3 // Uno Digital Pin 11
#endif // End of VARIABLE_SPINDLE

View File

@ -1,3 +1,129 @@
----------------
Date: 2015-05-23
Author: Sonny Jeon
Subject: Homing and limit updates. Minor bug fixes.
- Updated new homing cycle to error out when a pull-off motion detects
the limit is still active.
- Created a limits_get_state() function to centralize it. It reports
state as a bit-wise booleans according to axis numbering.
- Updated the print uint8 functions. Generalized it to allow both base2
and base10 printouts, while allowing base2 prints with N_AXIS digits
for limit state status reports. Doing this saved about 100bytes of
flash as well.
- Applied CoreXY status reporting bug fix by @phd0. Thanks!
----------------
Date: 2015-05-22
Author: Sonny Jeon
Subject: Merge pull request #702 from ashelly/default-split
Moving defaults to individual files in subdirectory
----------------
Date: 2015-05-22
Author: ashelly
Subject: Moving defaults to individual files in subdirectory
----------------
Date: 2015-05-22
Author: Sonny Jeon
Subject: Merge pull request #700 from ashelly/header-split
Header split
----------------
Date: 2015-05-22
Author: ashelly
Subject: Fixing up comment blocks in headers
----------------
Date: 2015-05-22
Author: ashelly
Subject: Splitting Cpu map into separate files.
Makes comparison, addition of new ones easier
----------------
Date: 2015-05-17
Author: Sonny Jeon
Subject: Critical M0/2/30 fix. Homing updates.
- Critical fix for M0 program pause. Due to its recent change, it would
cause Grbl to suspend but wouldnt notify the user of why Grbl was not
doing anything. The state would show IDLE and a cycle start would
resume it. Grbl now enters a HOLD state to better indicate the state
change.
- Critical fix for M2 and M30 program end. As with M0, the state
previously would show IDLE while suspended. Grbl now does not suspend
upon program end and leaves job control to the GUI. Grbl simply reports
a `[Pgm End]` as a feedback message and resets certain g-code modes.
- M2/30 g-code reseting fix. Previously Grbl would soft-reset after an
M2/30, but this was not complaint to the (linuxcnc) g-code standard. It
simply resets [G1,G17,G90,G94,G40,G54,M5,M9,M48] and keeps all other
modes the same.
- M0/M2/M30 check-mode fix. It now does not suspend the machine during
check-mode.
- Minor bug fix related to commands similar to G90.1, but not G90.1,
not reporting an unsupported command.
- Homing cycle refactoring. To help reduce the chance of users
misunderstanding their limit switch wiring, Grbl only moves a short
distance for the locate cycles only. In addition, the homing cycle
pulls-off the limit switch by the pull-off distance to re-engage and
locate home. This should improve its accuracy.
- HOMING_FORCE_ORIGIN now sets the origin to the pull-off location,
rather than where the limit switch was triggered.
- Updated default junction deviation to 0.01mm. Recent tests showed
that this improves Grbls cornering behavior a bit.
- Added the ShapeOko3 defaults.
- Added new feedback message `[Pgm End]` for M2/30 notification.
- Limit pin reporting is now a $10 status report option. Requested by
OEMs to help simplify support troubleshooting.
----------------
Date: 2015-03-29
Author: Sonny Jeon
Subject: Fix for limit pin reporting compile-option
- The limit pin reporting wasnt working correctly due to calling the
wrong similarly-named function. Verified to be working now.
----------------
Date: 2015-03-29
Author: Sonny Jeon
Subject: Commit history, logo license, full-arc fix.
- Commit history added to repo, as an easier way for people to see view
the changes over time.
- Grbl logo copyright license added. All rights reserved with regards
to the Grbl logo.
- G2/3 full circles would sometime not execute. The problem was due to
numerical round-off of a trig calculation. Added a machine epsilon
define to help detect and correct for this problem. Tested and should
not effect general operation of arcs.
---------------- ----------------
Date: 2015-03-27 Date: 2015-03-27
Author: Sungeun Jeon Author: Sungeun Jeon

View File

@ -79,7 +79,7 @@
// Number of homing cycles performed after when the machine initially jogs to limit switches. // Number of homing cycles performed after when the machine initially jogs to limit switches.
// This help in preventing overshoot and should improve repeatability. This value should be one or // This help in preventing overshoot and should improve repeatability. This value should be one or
// greater. // greater.
#define N_HOMING_LOCATE_CYCLE 2 // Integer (1-128) #define N_HOMING_LOCATE_CYCLE 1 // Integer (1-128)
// After homing, Grbl will set by default the entire machine space into negative space, as is typical // After homing, Grbl will set by default the entire machine space into negative space, as is typical
// for professional CNC machines, regardless of where the limit switches are located. Uncomment this // for professional CNC machines, regardless of where the limit switches are located. Uncomment this

View File

@ -18,260 +18,30 @@
along with Grbl. If not, see <http://www.gnu.org/licenses/>. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/ */
/* The cpu_map.h file serves as a central pin mapping settings file for different processor /* The cpu_map.h files serve as a central pin mapping selection file for different processor
types, i.e. AVR 328p or AVR Mega 2560. Grbl officially supports the Arduino Uno, but the types, i.e. AVR 328p or AVR Mega 2560. Each processor has its own pin mapping file.
(i.e. cpu_map_atmega328p.h) Grbl officially supports the Arduino Uno, but the
other supplied pin mappings are supplied by users, so your results may vary. */ other supplied pin mappings are supplied by users, so your results may vary. */
// NOTE: This is still a work in progress. We are still centralizing the configurations to // NOTE: With new processors, only add the define name and filename to use.
// this file, so your success may vary for other CPUs.
#ifndef cpu_map_h #ifndef cpu_map_h
#define cpu_map_h #define cpu_map_h
//----------------------------------------------------------------------------------------
#ifdef CPU_MAP_ATMEGA328P // (Arduino Uno) Officially supported by Grbl. #ifdef CPU_MAP_ATMEGA328P // (Arduino Uno) Officially supported by Grbl.
#include "cpu_map/cpu_map_atmega328p.h"
// Define serial port pins and interrupt vectors.
#define SERIAL_RX USART_RX_vect
#define SERIAL_UDRE USART_UDRE_vect
// Define step pulse output pins. NOTE: All step bit pins must be on the same port.
#define STEP_DDR DDRD
#define STEP_PORT PORTD
#define X_STEP_BIT 2 // Uno Digital Pin 2
#define Y_STEP_BIT 3 // Uno Digital Pin 3
#define Z_STEP_BIT 4 // Uno Digital Pin 4
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
// Define step direction output pins. NOTE: All direction pins must be on the same port.
#define DIRECTION_DDR DDRD
#define DIRECTION_PORT PORTD
#define X_DIRECTION_BIT 5 // Uno Digital Pin 5
#define Y_DIRECTION_BIT 6 // Uno Digital Pin 6
#define Z_DIRECTION_BIT 7 // Uno Digital Pin 7
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)) // All direction bits
// Define stepper driver enable/disable output pin.
#define STEPPERS_DISABLE_DDR DDRB
#define STEPPERS_DISABLE_PORT PORTB
#define STEPPERS_DISABLE_BIT 0 // Uno Digital Pin 8
#define STEPPERS_DISABLE_MASK (1<<STEPPERS_DISABLE_BIT)
// Define homing/hard limit switch input pins and limit interrupt vectors.
// NOTE: All limit bit pins must be on the same port, but not on a port with other input pins (CONTROL).
#define LIMIT_DDR DDRB
#define LIMIT_PIN PINB
#define LIMIT_PORT PORTB
#define X_LIMIT_BIT 1 // Uno Digital Pin 9
#define Y_LIMIT_BIT 2 // Uno Digital Pin 10
#ifdef VARIABLE_SPINDLE // Z Limit pin and spindle enabled swapped to access hardware PWM on Pin 11.
#define Z_LIMIT_BIT 4 // Uno Digital Pin 12
#else
#define Z_LIMIT_BIT 3 // Uno Digital Pin 11
#endif
#define LIMIT_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)|(1<<Z_LIMIT_BIT)) // All limit bits
#define LIMIT_INT PCIE0 // Pin change interrupt enable pin
#define LIMIT_INT_vect PCINT0_vect
#define LIMIT_PCMSK PCMSK0 // Pin change interrupt register
// Define spindle enable and spindle direction output pins.
#define SPINDLE_ENABLE_DDR DDRB
#define SPINDLE_ENABLE_PORT PORTB
// Z Limit pin and spindle PWM/enable pin swapped to access hardware PWM on Pin 11.
#ifdef VARIABLE_SPINDLE
#ifdef USE_SPINDLE_DIR_AS_ENABLE_PIN
// If enabled, spindle direction pin now used as spindle enable, while PWM remains on D11.
#define SPINDLE_ENABLE_BIT 5 // Uno Digital Pin 13 (NOTE: D13 can't be pulled-high input due to LED.)
#else
#define SPINDLE_ENABLE_BIT 3 // Uno Digital Pin 11
#endif
#else
#define SPINDLE_ENABLE_BIT 4 // Uno Digital Pin 12
#endif
#ifndef USE_SPINDLE_DIR_AS_ENABLE_PIN
#define SPINDLE_DIRECTION_DDR DDRB
#define SPINDLE_DIRECTION_PORT PORTB
#define SPINDLE_DIRECTION_BIT 5 // Uno Digital Pin 13 (NOTE: D13 can't be pulled-high input due to LED.)
#endif
// Define flood and mist coolant enable output pins.
// NOTE: Uno analog pins 4 and 5 are reserved for an i2c interface, and may be installed at
// a later date if flash and memory space allows.
#define COOLANT_FLOOD_DDR DDRC
#define COOLANT_FLOOD_PORT PORTC
#define COOLANT_FLOOD_BIT 3 // Uno Analog Pin 3
#ifdef ENABLE_M7 // Mist coolant disabled by default. See config.h to enable/disable.
#define COOLANT_MIST_DDR DDRC
#define COOLANT_MIST_PORT PORTC
#define COOLANT_MIST_BIT 4 // Uno Analog Pin 4
#endif
// Define user-control controls (cycle start, reset, feed hold) input pins.
// NOTE: All CONTROLs pins must be on the same port and not on a port with other input pins (limits).
#define CONTROL_DDR DDRC
#define CONTROL_PIN PINC
#define CONTROL_PORT PORTC
#define RESET_BIT 0 // Uno Analog Pin 0
#define FEED_HOLD_BIT 1 // Uno Analog Pin 1
#define CYCLE_START_BIT 2 // Uno Analog Pin 2
#define SAFETY_DOOR_BIT 1 // Uno Analog Pin 1 NOTE: Safety door is shared with feed hold. Enabled by config define.
#define CONTROL_INT PCIE1 // Pin change interrupt enable pin
#define CONTROL_INT_vect PCINT1_vect
#define CONTROL_PCMSK PCMSK1 // Pin change interrupt register
#define CONTROL_MASK ((1<<RESET_BIT)|(1<<FEED_HOLD_BIT)|(1<<CYCLE_START_BIT)|(1<<SAFETY_DOOR_BIT))
// Define probe switch input pin.
#define PROBE_DDR DDRC
#define PROBE_PIN PINC
#define PROBE_PORT PORTC
#define PROBE_BIT 5 // Uno Analog Pin 5
#define PROBE_MASK (1<<PROBE_BIT)
#ifdef VARIABLE_SPINDLE
// Advanced Configuration Below You should not need to touch these variables
#define PWM_MAX_VALUE 255.0
#define TCCRA_REGISTER TCCR2A
#define TCCRB_REGISTER TCCR2B
#define OCR_REGISTER OCR2A
#define COMB_BIT COM2A1
#define WAVE0_REGISTER WGM20
#define WAVE1_REGISTER WGM21
#define WAVE2_REGISTER WGM22
#define WAVE3_REGISTER WGM23
// NOTE: On the 328p, these must be the same as the SPINDLE_ENABLE settings.
#define SPINDLE_PWM_DDR DDRB
#define SPINDLE_PWM_PORT PORTB
#define SPINDLE_PWM_BIT 3 // Uno Digital Pin 11
#endif // End of VARIABLE_SPINDLE
#endif #endif
//----------------------------------------------------------------------------------------
#ifdef CPU_MAP_ATMEGA2560 // (Arduino Mega 2560) Working @EliteEng #ifdef CPU_MAP_ATMEGA2560 // (Arduino Mega 2560) Working @EliteEng
#include "cpu_map/cpu_map_atmega2560.h"
// Serial port pins
#define SERIAL_RX USART0_RX_vect
#define SERIAL_UDRE USART0_UDRE_vect
// Increase Buffers to make use of extra SRAM
//#define RX_BUFFER_SIZE 256
//#define TX_BUFFER_SIZE 128
//#define BLOCK_BUFFER_SIZE 36
//#define LINE_BUFFER_SIZE 100
// Define step pulse output pins. NOTE: All step bit pins must be on the same port.
#define STEP_DDR DDRA
#define STEP_PORT PORTA
#define STEP_PIN PINA
#define X_STEP_BIT 2 // MEGA2560 Digital Pin 24
#define Y_STEP_BIT 3 // MEGA2560 Digital Pin 25
#define Z_STEP_BIT 4 // MEGA2560 Digital Pin 26
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
// Define step direction output pins. NOTE: All direction pins must be on the same port.
#define DIRECTION_DDR DDRC
#define DIRECTION_PORT PORTC
#define DIRECTION_PIN PINC
#define X_DIRECTION_BIT 7 // MEGA2560 Digital Pin 30
#define Y_DIRECTION_BIT 6 // MEGA2560 Digital Pin 31
#define Z_DIRECTION_BIT 5 // MEGA2560 Digital Pin 32
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)) // All direction bits
// Define stepper driver enable/disable output pin.
#define STEPPERS_DISABLE_DDR DDRB
#define STEPPERS_DISABLE_PORT PORTB
#define STEPPERS_DISABLE_BIT 7 // MEGA2560 Digital Pin 13
#define STEPPERS_DISABLE_MASK (1<<STEPPERS_DISABLE_BIT)
// NOTE: All limit bit pins must be on the same port
#define LIMIT_DDR DDRB
#define LIMIT_PORT PORTB
#define LIMIT_PIN PINB
#define X_LIMIT_BIT 4 // MEGA2560 Digital Pin 10
#define Y_LIMIT_BIT 5 // MEGA2560 Digital Pin 11
#define Z_LIMIT_BIT 6 // MEGA2560 Digital Pin 12
#define LIMIT_INT PCIE0 // Pin change interrupt enable pin
#define LIMIT_INT_vect PCINT0_vect
#define LIMIT_PCMSK PCMSK0 // Pin change interrupt register
#define LIMIT_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)|(1<<Z_LIMIT_BIT)) // All limit bits
// Define spindle enable and spindle direction output pins.
#define SPINDLE_ENABLE_DDR DDRH
#define SPINDLE_ENABLE_PORT PORTH
#define SPINDLE_ENABLE_BIT 3 // MEGA2560 Digital Pin 6
#define SPINDLE_DIRECTION_DDR DDRE
#define SPINDLE_DIRECTION_PORT PORTE
#define SPINDLE_DIRECTION_BIT 3 // MEGA2560 Digital Pin 5
// Define flood and mist coolant enable output pins.
// NOTE: Uno analog pins 4 and 5 are reserved for an i2c interface, and may be installed at
// a later date if flash and memory space allows.
#define COOLANT_FLOOD_DDR DDRH
#define COOLANT_FLOOD_PORT PORTH
#define COOLANT_FLOOD_BIT 5 // MEGA2560 Digital Pin 8
#ifdef ENABLE_M7 // Mist coolant disabled by default. See config.h to enable/disable.
#define COOLANT_MIST_DDR DDRH
#define COOLANT_MIST_PORT PORTH
#define COOLANT_MIST_BIT 6 // MEGA2560 Digital Pin 9
#endif
// Define user-control CONTROLs (cycle start, reset, feed hold) input pins.
// NOTE: All CONTROLs pins must be on the same port and not on a port with other input pins (limits).
#define CONTROL_DDR DDRK
#define CONTROL_PIN PINK
#define CONTROL_PORT PORTK
#define RESET_BIT 0 // MEGA2560 Analog Pin 8
#define FEED_HOLD_BIT 1 // MEGA2560 Analog Pin 9
#define CYCLE_START_BIT 2 // MEGA2560 Analog Pin 10
#define SAFETY_DOOR_BIT 3 // MEGA2560 Analog Pin 11
#define CONTROL_INT PCIE2 // Pin change interrupt enable pin
#define CONTROL_INT_vect PCINT2_vect
#define CONTROL_PCMSK PCMSK2 // Pin change interrupt register
#define CONTROL_MASK ((1<<RESET_BIT)|(1<<FEED_HOLD_BIT)|(1<<CYCLE_START_BIT)|(1<<SAFETY_DOOR_BIT))
// Define probe switch input pin.
#define PROBE_DDR DDRK
#define PROBE_PIN PINK
#define PROBE_PORT PORTK
#define PROBE_BIT 7 // MEGA2560 Analog Pin 15
#define PROBE_MASK (1<<PROBE_BIT)
// Start of PWM & Stepper Enabled Spindle
#ifdef VARIABLE_SPINDLE
// Advanced Configuration Below You should not need to touch these variables
// Set Timer up to use TIMER4B which is attached to Digital Pin 7
#define PWM_MAX_VALUE 65535.0
#define TCCRA_REGISTER TCCR4A
#define TCCRB_REGISTER TCCR4B
#define OCR_REGISTER OCR4B
#define COMB_BIT COM4B1
#define WAVE0_REGISTER WGM40
#define WAVE1_REGISTER WGM41
#define WAVE2_REGISTER WGM42
#define WAVE3_REGISTER WGM43
#define SPINDLE_PWM_DDR DDRH
#define SPINDLE_PWM_PORT PORTH
#define SPINDLE_PWM_BIT 4 // MEGA2560 Digital Pin 97
#endif // End of VARIABLE_SPINDLE
#endif #endif
//----------------------------------------------------------------------------------------
/* /*
#ifdef CPU_MAP_CUSTOM_PROC #ifdef CPU_MAP_CUSTOM_PROC
// For a custom pin map or different processor, copy and paste one of the default cpu map // For a custom pin map or different processor, copy and edit one of the available cpu
// settings above and modify it to your needs. Then, make sure the defined name is also // map files and modify it to your needs. Make sure the defined name is also changed in
// changed in the config.h file. // the config.h file.
#endif #endif
*/ */

View File

@ -18,285 +18,62 @@
along with Grbl. If not, see <http://www.gnu.org/licenses/>. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/ */
/* The defaults.h file serves as a central default settings file for different machine /* The defaults.h file serves as a central default settings selector for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you files listed here are supplied by users, so your results may vary. However, this should
a good starting point as you get to know your machine and tweak the settings for your give you a good starting point as you get to know your machine and tweak the settings for
our nefarious needs. */ your nefarious needs.
Ensure one and only one of these DEFAULTS_XXX values is defined in config.h */
#ifndef defaults_h #ifndef defaults_h
#define defaults_h
// Only define the DEFAULT_XXX with where to find the corresponding default_XXX.h file.
// Don't #define defaults_h here, let the selected file do it. Prevents including more than one.
#ifdef DEFAULTS_GENERIC #ifdef DEFAULTS_GENERIC
// Grbl generic default settings. Should work across different machines. // Grbl generic default settings. Should work across different machines.
#define DEFAULT_X_STEPS_PER_MM 250.0 #include "defaults/defaults_generic.h"
#define DEFAULT_Y_STEPS_PER_MM 250.0
#define DEFAULT_Z_STEPS_PER_MM 250.0
#define DEFAULT_X_MAX_RATE 500.0 // mm/min
#define DEFAULT_Y_MAX_RATE 500.0 // mm/min
#define DEFAULT_Z_MAX_RATE 500.0 // mm/min
#define DEFAULT_X_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Y_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Z_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 200.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK 0
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 500.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#ifdef DEFAULTS_SHERLINE_5400 #ifdef DEFAULTS_SHERLINE_5400
// Description: Sherline 5400 mill with three NEMA 23 Keling KL23H256-21-8B 185 oz-in stepper motors, // Description: Sherline 5400 mill with three NEMA 23 Keling KL23H256-21-8B 185 oz-in stepper motors,
// driven by three Pololu A4988 stepper drivers with a 30V, 6A power supply at 1.5A per winding. // driven by three Pololu A4988 stepper drivers with a 30V, 6A power supply at 1.5A per winding.
#define MICROSTEPS 2 #include "defaults/defaults_sherline.h"
#define STEPS_PER_REV 200.0
#define MM_PER_REV (0.050*MM_PER_INCH) // 0.050 inch/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Y_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Z_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_X_MAX_RATE 635.0 // mm/min (25 ipm)
#define DEFAULT_Y_MAX_RATE 635.0 // mm/min
#define DEFAULT_Z_MAX_RATE 635.0 // mm/min
#define DEFAULT_X_ACCELERATION (50.0*60*60) // 50*60*60 mm/min^2 = 50 mm/sec^2
#define DEFAULT_Y_ACCELERATION (50.0*60*60) // 50*60*60 mm/min^2 = 50 mm/sec^2
#define DEFAULT_Z_ACCELERATION (50.0*60*60) // 50*60*60 mm/min^2 = 50 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 225.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 125.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 170.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<Y_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // true
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 50.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 635.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#ifdef DEFAULTS_SHAPEOKO #ifdef DEFAULTS_SHAPEOKO
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos // Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield with a 24V, 4.2A power supply. // grblShield with a 24V, 4.2A power supply.
#define MICROSTEPS_XY 8 #include "defaults/defaults_shapeoko.h"
#define STEP_REVS_XY 400
#define MM_PER_REV_XY (0.08*18*MM_PER_INCH) // 0.08 in belt pitch, 18 pulley teeth
#define MICROSTEPS_Z 2
#define STEP_REVS_Z 400
#define MM_PER_REV_Z 1.250 // 1.25 mm/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Y_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Z_STEPS_PER_MM (MICROSTEPS_Z*STEP_REVS_Z/MM_PER_REV_Z)
#define DEFAULT_X_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 1000.0 // mm/min
#define DEFAULT_X_ACCELERATION (15.0*60*60) // 15*60*60 mm/min^2 = 15 mm/sec^2
#define DEFAULT_Y_ACCELERATION (15.0*60*60) // 15*60*60 mm/min^2 = 15 mm/sec^2
#define DEFAULT_Z_ACCELERATION (15.0*60*60) // 15*60*60 mm/min^2 = 15 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 200.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<Y_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 255 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.05 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 250.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#ifdef DEFAULTS_SHAPEOKO_2 #ifdef DEFAULTS_SHAPEOKO_2
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos // Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield at 28V. // grblShield at 28V.
#define MICROSTEPS_XY 8 #include "defaults/defaults_shapeoko2.h"
#define STEP_REVS_XY 200 #endif
#define MM_PER_REV_XY (2.0*20) // 2mm belt pitch, 20 pulley teeth
#define MICROSTEPS_Z 2 #ifdef DEFAULTS_SHAPEOKO_3
#define STEP_REVS_Z 200 // Description: Shapeoko CNC mill with three NEMA 23 stepper motors, driven by CarbideMotion
#define MM_PER_REV_Z 1.250 // 1.25 mm/rev leadscrew #include "defaults/defaults_shapeoko3.h"
#define DEFAULT_X_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Y_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Z_STEPS_PER_MM (MICROSTEPS_Z*STEP_REVS_Z/MM_PER_REV_Z)
#define DEFAULT_X_MAX_RATE 5000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 5000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 500.0 // mm/min
#define DEFAULT_X_ACCELERATION (250.0*60*60) // 25*60*60 mm/min^2 = 25 mm/sec^2
#define DEFAULT_Y_ACCELERATION (250.0*60*60) // 25*60*60 mm/min^2 = 25 mm/sec^2
#define DEFAULT_Z_ACCELERATION (50.0*60*60) // 25*60*60 mm/min^2 = 25 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 290.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 290.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 100.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<X_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 255 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.05 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 250.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#ifdef DEFAULTS_ZEN_TOOLWORKS_7x7 #ifdef DEFAULTS_ZEN_TOOLWORKS_7x7
// Description: Zen Toolworks 7x7 mill with three Shinano SST43D2121 65oz-in NEMA 17 stepper motors. // Description: Zen Toolworks 7x7 mill with three Shinano SST43D2121 65oz-in NEMA 17 stepper motors.
// Leadscrew is different from some ZTW kits, where most are 1.25mm/rev rather than 8.0mm/rev here. // Leadscrew is different from some ZTW kits, where most are 1.25mm/rev rather than 8.0mm/rev here.
// Driven by 30V, 6A power supply and TI DRV8811 stepper motor drivers. // Driven by 30V, 6A power supply and TI DRV8811 stepper motor drivers.
#define MICROSTEPS 8 #include "defaults/defaults_zen_toolworks_7x7.h"
#define STEPS_PER_REV 200.0
#define MM_PER_REV 8.0 // 8 mm/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Y_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Z_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_X_MAX_RATE 6000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 6000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 6000.0 // mm/min
#define DEFAULT_X_ACCELERATION (600.0*60*60) // 600*60*60 mm/min^2 = 600 mm/sec^2
#define DEFAULT_Y_ACCELERATION (600.0*60*60) // 600*60*60 mm/min^2 = 600 mm/sec^2
#define DEFAULT_Z_ACCELERATION (600.0*60*60) // 600*60*60 mm/min^2 = 600 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 190.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 180.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 150.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<Y_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 250.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#ifdef DEFAULTS_OXCNC #ifdef DEFAULTS_OXCNC
// Grbl settings for OpenBuilds OX CNC Machine // Grbl settings for OpenBuilds OX CNC Machine
// http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/ // http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/
#define DEFAULT_X_STEPS_PER_MM 26.670 #include "defaults/defaults_oxcnc.h"
#define DEFAULT_Y_STEPS_PER_MM 26.670
#define DEFAULT_Z_STEPS_PER_MM 50
#define DEFAULT_X_MAX_RATE 500.0 // mm/min
#define DEFAULT_Y_MAX_RATE 500.0 // mm/min
#define DEFAULT_Z_MAX_RATE 500.0 // mm/min
#define DEFAULT_X_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Y_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Z_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 500.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 750.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 80.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK 0
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 500.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#ifdef DEFAULTS_SIMULATOR #ifdef DEFAULTS_SIMULATOR
// Settings only for Grbl Simulator (www.github.com/grbl/grbl-sim) // Settings only for Grbl Simulator (www.github.com/grbl/grbl-sim)
// Grbl generic default settings. Should work across different machines. #include "defaults/defaults_simulator.h"
#define DEFAULT_X_STEPS_PER_MM 1000.0
#define DEFAULT_Y_STEPS_PER_MM 1000.0
#define DEFAULT_Z_STEPS_PER_MM 1000.0
#define DEFAULT_X_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 1000.0 // mm/min
#define DEFAULT_X_ACCELERATION (100.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Y_ACCELERATION (100.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Z_ACCELERATION (100.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 1000.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 1000.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 1000.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK 0
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 500.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif #endif
#endif #endif

View File

@ -0,0 +1,63 @@
/*
defaults_generic.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Grbl generic default settings. Should work across different machines.
#define DEFAULT_X_STEPS_PER_MM 250.0
#define DEFAULT_Y_STEPS_PER_MM 250.0
#define DEFAULT_Z_STEPS_PER_MM 250.0
#define DEFAULT_X_MAX_RATE 500.0 // mm/min
#define DEFAULT_Y_MAX_RATE 500.0 // mm/min
#define DEFAULT_Z_MAX_RATE 500.0 // mm/min
#define DEFAULT_X_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Y_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Z_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 200.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK 0
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 500.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -0,0 +1,64 @@
/*
defaults_oxcnc.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Grbl settings for OpenBuilds OX CNC Machine
// http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/
#define DEFAULT_X_STEPS_PER_MM 26.670
#define DEFAULT_Y_STEPS_PER_MM 26.670
#define DEFAULT_Z_STEPS_PER_MM 50
#define DEFAULT_X_MAX_RATE 500.0 // mm/min
#define DEFAULT_Y_MAX_RATE 500.0 // mm/min
#define DEFAULT_Z_MAX_RATE 500.0 // mm/min
#define DEFAULT_X_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Y_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Z_ACCELERATION (10.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 500.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 750.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 80.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK 0
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 500.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -0,0 +1,71 @@
/*
defaults_shapeoko.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield with a 24V, 4.2A power supply.
#define MICROSTEPS_XY 8
#define STEP_REVS_XY 400
#define MM_PER_REV_XY (0.08*18*MM_PER_INCH) // 0.08 in belt pitch, 18 pulley teeth
#define MICROSTEPS_Z 2
#define STEP_REVS_Z 400
#define MM_PER_REV_Z 1.250 // 1.25 mm/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Y_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Z_STEPS_PER_MM (MICROSTEPS_Z*STEP_REVS_Z/MM_PER_REV_Z)
#define DEFAULT_X_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 1000.0 // mm/min
#define DEFAULT_X_ACCELERATION (15.0*60*60) // 15*60*60 mm/min^2 = 15 mm/sec^2
#define DEFAULT_Y_ACCELERATION (15.0*60*60) // 15*60*60 mm/min^2 = 15 mm/sec^2
#define DEFAULT_Z_ACCELERATION (15.0*60*60) // 15*60*60 mm/min^2 = 15 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 200.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 200.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<Y_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 255 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.05 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 250.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -0,0 +1,70 @@
/*
defaults_shapeoko2.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Description: Shapeoko CNC mill with three NEMA 17 stepper motors, driven by Synthetos
// grblShield at 28V.
#define MICROSTEPS_XY 8
#define STEP_REVS_XY 200
#define MM_PER_REV_XY (2.0*20) // 2mm belt pitch, 20 pulley teeth
#define MICROSTEPS_Z 2
#define STEP_REVS_Z 200
#define MM_PER_REV_Z 1.250 // 1.25 mm/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Y_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Z_STEPS_PER_MM (MICROSTEPS_Z*STEP_REVS_Z/MM_PER_REV_Z)
#define DEFAULT_X_MAX_RATE 5000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 5000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 500.0 // mm/min
#define DEFAULT_X_ACCELERATION (250.0*60*60) // 25*60*60 mm/min^2 = 25 mm/sec^2
#define DEFAULT_Y_ACCELERATION (250.0*60*60) // 25*60*60 mm/min^2 = 25 mm/sec^2
#define DEFAULT_Z_ACCELERATION (50.0*60*60) // 25*60*60 mm/min^2 = 25 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 290.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 290.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 100.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<X_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 255 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.05 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 250.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -0,0 +1,68 @@
/*
defaults_shapeoko3.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Description: Shapeoko CNC mill with three NEMA 23 stepper motors, driven by CarbideMotion
#define MICROSTEPS_XY 8
#define STEP_REVS_XY 200
#define MM_PER_REV_XY (2.0*20) // 2mm belt pitch, 20 pulley teeth
#define MICROSTEPS_Z 8
#define STEP_REVS_Z 200
#define MM_PER_REV_Z (2.0*20) // 2mm belt pitch, 20 pulley teeth
#define DEFAULT_X_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Y_STEPS_PER_MM (MICROSTEPS_XY*STEP_REVS_XY/MM_PER_REV_XY)
#define DEFAULT_Z_STEPS_PER_MM (MICROSTEPS_Z*STEP_REVS_Z/MM_PER_REV_Z)
#define DEFAULT_X_MAX_RATE 5000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 5000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 5000.0 // mm/min
#define DEFAULT_X_ACCELERATION (400.0*60*60) // 400*60*60 mm/min^2 = 400 mm/sec^2
#define DEFAULT_Y_ACCELERATION (400.0*60*60) // 400*60*60 mm/min^2 = 400 mm/sec^2
#define DEFAULT_Z_ACCELERATION (400.0*60*60) // 400*60*60 mm/min^2 = 400 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 425.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 465.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 80.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<X_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 255 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK 255 // All enabled
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.01 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 100.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 1000.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 25 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 5.0 // mm
#endif

View File

@ -0,0 +1,67 @@
/*
defaults_sherline.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Description: Sherline 5400 mill with three NEMA 23 Keling KL23H256-21-8B 185 oz-in stepper motors,
// driven by three Pololu A4988 stepper drivers with a 30V, 6A power supply at 1.5A per winding.
#define MICROSTEPS 2
#define STEPS_PER_REV 200.0
#define MM_PER_REV (0.050*MM_PER_INCH) // 0.050 inch/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Y_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Z_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_X_MAX_RATE 635.0 // mm/min (25 ipm)
#define DEFAULT_Y_MAX_RATE 635.0 // mm/min
#define DEFAULT_Z_MAX_RATE 635.0 // mm/min
#define DEFAULT_X_ACCELERATION (50.0*60*60) // 50*60*60 mm/min^2 = 50 mm/sec^2
#define DEFAULT_Y_ACCELERATION (50.0*60*60) // 50*60*60 mm/min^2 = 50 mm/sec^2
#define DEFAULT_Z_ACCELERATION (50.0*60*60) // 50*60*60 mm/min^2 = 50 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 225.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 125.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 170.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<Y_AXIS)|(1<<Z_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // true
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 50.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 635.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -0,0 +1,64 @@
/*
defaults_simulator.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Settings only for Grbl Simulator (www.github.com/grbl/grbl-sim)
// Grbl generic default settings. Should work across different machines.
#define DEFAULT_X_STEPS_PER_MM 1000.0
#define DEFAULT_Y_STEPS_PER_MM 1000.0
#define DEFAULT_Z_STEPS_PER_MM 1000.0
#define DEFAULT_X_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 1000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 1000.0 // mm/min
#define DEFAULT_X_ACCELERATION (100.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Y_ACCELERATION (100.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_Z_ACCELERATION (100.0*60*60) // 10*60*60 mm/min^2 = 10 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 1000.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 1000.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 1000.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK 0
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 500.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -0,0 +1,69 @@
/*
defaults_zen_toolworks_7x7.h - defaults settings configuration file
Part of Grbl
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The defaults.h file serves as a central default settings file for different machine
types, from DIY CNC mills to CNC conversions of off-the-shelf machines. The settings
here are supplied by users, so your results may vary. However, this should give you
a good starting point as you get to know your machine and tweak the settings for your
nefarious needs. */
#ifndef defaults_h
#define defaults_h
// Description: Zen Toolworks 7x7 mill with three Shinano SST43D2121 65oz-in NEMA 17 stepper motors.
// Leadscrew is different from some ZTW kits, where most are 1.25mm/rev rather than 8.0mm/rev here.
// Driven by 30V, 6A power supply and TI DRV8811 stepper motor drivers.
#define MICROSTEPS 8
#define STEPS_PER_REV 200.0
#define MM_PER_REV 8.0 // 8 mm/rev leadscrew
#define DEFAULT_X_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Y_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_Z_STEPS_PER_MM (STEPS_PER_REV*MICROSTEPS/MM_PER_REV)
#define DEFAULT_X_MAX_RATE 6000.0 // mm/min
#define DEFAULT_Y_MAX_RATE 6000.0 // mm/min
#define DEFAULT_Z_MAX_RATE 6000.0 // mm/min
#define DEFAULT_X_ACCELERATION (600.0*60*60) // 600*60*60 mm/min^2 = 600 mm/sec^2
#define DEFAULT_Y_ACCELERATION (600.0*60*60) // 600*60*60 mm/min^2 = 600 mm/sec^2
#define DEFAULT_Z_ACCELERATION (600.0*60*60) // 600*60*60 mm/min^2 = 600 mm/sec^2
#define DEFAULT_X_MAX_TRAVEL 190.0 // mm
#define DEFAULT_Y_MAX_TRAVEL 180.0 // mm
#define DEFAULT_Z_MAX_TRAVEL 150.0 // mm
#define DEFAULT_STEP_PULSE_MICROSECONDS 10
#define DEFAULT_STEPPING_INVERT_MASK 0
#define DEFAULT_DIRECTION_INVERT_MASK ((1<<Y_AXIS))
#define DEFAULT_STEPPER_IDLE_LOCK_TIME 25 // msec (0-254, 255 keeps steppers enabled)
#define DEFAULT_STATUS_REPORT_MASK ((BITFLAG_RT_STATUS_MACHINE_POSITION)|(BITFLAG_RT_STATUS_WORK_POSITION))
#define DEFAULT_JUNCTION_DEVIATION 0.02 // mm
#define DEFAULT_ARC_TOLERANCE 0.002 // mm
#define DEFAULT_REPORT_INCHES 0 // false
#define DEFAULT_AUTO_START 1 // true
#define DEFAULT_INVERT_ST_ENABLE 0 // false
#define DEFAULT_INVERT_LIMIT_PINS 0 // false
#define DEFAULT_SOFT_LIMIT_ENABLE 0 // false
#define DEFAULT_HARD_LIMIT_ENABLE 0 // false
#define DEFAULT_HOMING_ENABLE 0 // false
#define DEFAULT_HOMING_DIR_MASK 0 // move positive dir
#define DEFAULT_HOMING_FEED_RATE 25.0 // mm/min
#define DEFAULT_HOMING_SEEK_RATE 250.0 // mm/min
#define DEFAULT_HOMING_DEBOUNCE_DELAY 250 // msec (0-65k)
#define DEFAULT_HOMING_PULLOFF 1.0 // mm
#endif

View File

@ -219,7 +219,7 @@ uint8_t gc_execute_line(char *line)
else { gc_block.modal.distance = DISTANCE_MODE_INCREMENTAL; } // G91 else { gc_block.modal.distance = DISTANCE_MODE_INCREMENTAL; } // G91
} else { } else {
word_bit = MODAL_GROUP_G4; word_bit = MODAL_GROUP_G4;
if (mantissa != 10) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G90.1 not supported] if ((mantissa != 10) || (int_value == 90)) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G90.1 not supported]
mantissa = 0; // Set to zero to indicate valid non-integer G command. mantissa = 0; // Set to zero to indicate valid non-integer G command.
// Otherwise, arc IJK incremental mode is default. G91.1 does nothing. // Otherwise, arc IJK incremental mode is default. G91.1 does nothing.
} }
@ -1028,18 +1028,41 @@ uint8_t gc_execute_line(char *line)
// refill and can only be resumed by the cycle start run-time command. // refill and can only be resumed by the cycle start run-time command.
gc_state.modal.program_flow = gc_block.modal.program_flow; gc_state.modal.program_flow = gc_block.modal.program_flow;
if (gc_state.modal.program_flow) { if (gc_state.modal.program_flow) {
protocol_buffer_synchronize(); // Finish all remaining buffered motions. Program paused when complete. protocol_buffer_synchronize(); // Sync and finish all remaining buffered motions before moving on.
if (gc_state.modal.program_flow == PROGRAM_FLOW_PAUSED) {
if (sys.state != STATE_CHECK_MODE) {
bit_true_atomic(sys.rt_exec_state, EXEC_FEED_HOLD); // Use feed hold for program pause.
protocol_execute_realtime(); // Execute suspend.
}
} else { // == PROGRAM_FLOW_COMPLETED
// Upon program complete, only a subset of g-codes reset to certain defaults, according to
// LinuxCNC's program end descriptions and testing. Only modal groups [G-code 1,2,3,5,7,12]
// and [M-code 7,8,9] reset to [G1,G17,G90,G94,G40,G54,M5,M9,M48]. The remaining modal groups
// [G-code 4,6,8,10,13,14,15] and [M-code 4,5,6] and the modal words [F,S,T,H] do not reset.
gc_state.modal.motion = MOTION_MODE_LINEAR;
gc_state.modal.plane_select = PLANE_SELECT_XY;
gc_state.modal.distance = DISTANCE_MODE_ABSOLUTE;
gc_state.modal.feed_rate = FEED_RATE_MODE_UNITS_PER_MIN;
// gc_state.modal.cutter_comp = CUTTER_COMP_DISABLE; // Not supported.
gc_state.modal.coord_select = 0; // G54
gc_state.modal.spindle = SPINDLE_DISABLE;
gc_state.modal.coolant = COOLANT_DISABLE;
// gc_state.modal.override = OVERRIDE_DISABLE; // Not supported.
sys.suspend = true; // Execute coordinate change and spindle/coolant stop.
protocol_execute_realtime(); // Suspend execution. For both program pause or program end. if (sys.state != STATE_CHECK_MODE) {
if (!(settings_read_coord_data(gc_state.modal.coord_select,coordinate_data))) { FAIL(STATUS_SETTING_READ_FAIL); }
memcpy(gc_state.coord_system,coordinate_data,sizeof(coordinate_data));
spindle_stop();
coolant_stop();
}
// If complete, reset to reload defaults (G92.2,G54,G17,G90,G94,M48,G40,M5,M9). Otherwise, report_feedback_message(MESSAGE_PROGRAM_END);
// re-enable program flow after pause complete, where cycle start will resume the program. }
if (gc_state.modal.program_flow == PROGRAM_FLOW_COMPLETED) { mc_reset(); } gc_state.modal.program_flow = PROGRAM_FLOW_RUNNING; // Reset program flow.
else { gc_state.modal.program_flow = PROGRAM_FLOW_RUNNING; } // Resume from program pause.
} }
// TODO: % to denote start of program. Sets auto cycle start? // TODO: % to denote start of program.
return(STATUS_OK); return(STATUS_OK);
} }

View File

@ -23,7 +23,7 @@
// Grbl versioning system // Grbl versioning system
#define GRBL_VERSION "0.9i" #define GRBL_VERSION "0.9i"
#define GRBL_VERSION_BUILD "20150329" #define GRBL_VERSION_BUILD "20150523"
// Define standard libraries used by Grbl. // Define standard libraries used by Grbl.
#include <avr/io.h> #include <avr/io.h>

View File

@ -22,9 +22,13 @@
#include "grbl.h" #include "grbl.h"
// Homing axis search distance multiplier. Computed by this value times the axis max travel. // Homing axis search distance multiplier. Computed by this value times the cycle travel.
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Must be > 1 to ensure limit switch will be engaged. #ifndef HOMING_AXIS_SEARCH_SCALAR
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Must be > 1 to ensure limit switch will be engaged.
#endif
#ifndef HOMING_AXIS_LOCATE_SCALAR
#define HOMING_AXIS_LOCATE_SCALAR 5.0 // Must be > 1 to ensure limit switch is cleared.
#endif
void limits_init() void limits_init()
{ {
@ -51,6 +55,7 @@ void limits_init()
} }
// Disables hard limits.
void limits_disable() void limits_disable()
{ {
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt
@ -58,6 +63,24 @@ void limits_disable()
} }
// Returns limit state as a bit-wise uint8 variable. Each bit indicates an axis limit, where
// triggered is 1 and not triggered is 0. Invert mask is applied. Axes are defined by their
// number in bit position, i.e. Z_AXIS is (1<<2) or bit 2, and Y_AXIS is (1<<1) or bit 1.
uint8_t limits_get_state()
{
uint8_t limit_state = 0;
uint8_t pin = (LIMIT_PIN & LIMIT_MASK);
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { pin ^= LIMIT_MASK; }
if (pin) {
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
if (pin & get_limit_pin_mask(idx)) { limit_state |= (1 << idx); }
}
}
return(limit_state);
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing // This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls. // limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless // If a switch is triggered at all, something bad has happened and treat it as such, regardless
@ -80,10 +103,8 @@ void limits_disable()
if (sys.state != STATE_ALARM) { if (sys.state != STATE_ALARM) {
if (!(sys.rt_exec_alarm)) { if (!(sys.rt_exec_alarm)) {
#ifdef HARD_LIMIT_FORCE_STATE_CHECK #ifdef HARD_LIMIT_FORCE_STATE_CHECK
uint8_t bits = (LIMIT_PIN & LIMIT_MASK);
// Check limit pin state. // Check limit pin state.
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { bits ^= LIMIT_MASK; } if (limits_get_state()) {
if (bits) {
mc_reset(); // Initiate system kill. mc_reset(); // Initiate system kill.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
} }
@ -102,10 +123,8 @@ void limits_disable()
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer. WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state. if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
if (!(sys.rt_exec_alarm)) { if (!(sys.rt_exec_alarm)) {
uint8_t bits = (LIMIT_PIN & LIMIT_MASK);
// Check limit pin state. // Check limit pin state.
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { bits ^= LIMIT_MASK; } if (limits_get_state()) {
if (bits) {
mc_reset(); // Initiate system kill. mc_reset(); // Initiate system kill.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
} }
@ -126,19 +145,14 @@ void limits_go_home(uint8_t cycle_mask)
{ {
if (sys.abort) { return; } // Block if system reset has been issued. if (sys.abort) { return; } // Block if system reset has been issued.
// Initialize homing in search mode to quickly engage the specified cycle_mask limit switches. // Initialize
bool approach = true;
float homing_rate = settings.homing_seek_rate;
uint8_t invert_pin, idx;
uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1); uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1);
uint8_t step_pin[N_AXIS];
float target[N_AXIS]; float target[N_AXIS];
uint8_t limit_pin[N_AXIS], step_pin[N_AXIS];
float max_travel = 0.0; float max_travel = 0.0;
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) { for (idx=0; idx<N_AXIS; idx++) {
// Initialize limit and step pin masks // Initialize step pin masks
limit_pin[idx] = get_limit_pin_mask(idx);
step_pin[idx] = get_step_pin_mask(idx); step_pin[idx] = get_step_pin_mask(idx);
#ifdef COREXY #ifdef COREXY
if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); } if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); }
@ -149,32 +163,33 @@ void limits_go_home(uint8_t cycle_mask)
// NOTE: settings.max_travel[] is stored as a negative value. // NOTE: settings.max_travel[] is stored as a negative value.
max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]); max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]);
} }
} }
plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions. // Set search mode with approach at seek rate to quickly engage the specified cycle_mask limit switches.
plan_sync_position(); // Sync planner position to current machine position. bool approach = true;
float homing_rate = settings.homing_seek_rate;
uint8_t limit_state, axislock, n_active_axis;
do { do {
// Initialize invert_pin boolean based on approach and invert pin user setting.
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { invert_pin = approach; } system_convert_array_steps_to_mpos(target,sys.position);
else { invert_pin = !approach; }
// Initialize and declare variables needed for homing routine. // Initialize and declare variables needed for homing routine.
uint8_t axislock = 0; axislock = 0;
uint8_t n_active_axis = 0; n_active_axis = 0;
system_convert_array_steps_to_mpos(target,sys.position);
for (idx=0; idx<N_AXIS; idx++) { for (idx=0; idx<N_AXIS; idx++) {
// Set target location for active axes and setup computation for homing rate. // Set target location for active axes and setup computation for homing rate.
if (bit_istrue(cycle_mask,bit(idx))) { if (bit_istrue(cycle_mask,bit(idx))) {
n_active_axis++; n_active_axis++;
sys.position[idx] = 0;
// Set target direction based on cycle mask and homing cycle approach state. // Set target direction based on cycle mask and homing cycle approach state.
// NOTE: This happens to compile smaller than any other implementation tried.
if (bit_istrue(settings.homing_dir_mask,bit(idx))) { if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
if (approach) { target[idx] -= max_travel; } if (approach) { target[idx] = -max_travel; }
else { target[idx] += max_travel; } else { target[idx] = max_travel; }
} else { } else {
if (approach) { target[idx] += max_travel; } if (approach) { target[idx] = max_travel; }
else { target[idx] -= max_travel; } else { target[idx] = -max_travel; }
} }
// Apply axislock to the step port pins active in this cycle. // Apply axislock to the step port pins active in this cycle.
axislock |= step_pin[idx]; axislock |= step_pin[idx];
@ -184,9 +199,9 @@ void limits_go_home(uint8_t cycle_mask)
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate. homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
sys.homing_axis_lock = axislock; sys.homing_axis_lock = axislock;
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle. plan_sync_position(); // Sync planner position to current machine position.
uint8_t limit_state;
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
#ifdef USE_LINE_NUMBERS #ifdef USE_LINE_NUMBERS
plan_buffer_line(target, homing_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion. plan_buffer_line(target, homing_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion.
#else #else
@ -195,37 +210,55 @@ void limits_go_home(uint8_t cycle_mask)
st_prep_buffer(); // Prep and fill segment buffer from newly planned block. st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
st_wake_up(); // Initiate motion st_wake_up(); // Initiate motion
do { do {
// Check limit state. Lock out cycle axes when they change. if (approach) {
limit_state = LIMIT_PIN; // Check limit state. Lock out cycle axes when they change.
if (invert_pin) { limit_state ^= LIMIT_MASK; } limit_state = limits_get_state();
for (idx=0; idx<N_AXIS; idx++) { for (idx=0; idx<N_AXIS; idx++) {
if (axislock & step_pin[idx]) { if (axislock & step_pin[idx]) {
if (limit_state & limit_pin[idx]) { axislock &= ~(step_pin[idx]); } if (limit_state & (1 << idx)) { axislock &= ~(step_pin[idx]); }
} }
} }
sys.homing_axis_lock = axislock; sys.homing_axis_lock = axislock;
st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us. }
// Exit routines: User abort homing and alarm upon safety door or no limit switch found. st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.
// No time to run protocol_execute_realtime() in this loop.
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) { // Exit routines: No time to run protocol_execute_realtime() in this loop.
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_CYCLE_STOP)) { mc_reset(); } if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) {
protocol_execute_realtime(); // Homing failure: Limit switches are still engaged after pull-off motion
return; if ( (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET)) || // Safety door or reset issued
} (!approach && (limits_get_state() & cycle_mask)) || // Limit switch still engaged after pull-off motion
} while (STEP_MASK & axislock); ( approach && (sys.rt_exec_state & EXEC_CYCLE_STOP)) ) { // Limit switch not found during approach.
mc_reset(); // Stop motors, if they are running.
protocol_execute_realtime();
return;
} else {
// Pull-off motion complete. Disable CYCLE_STOP from executing.
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_STOP);
break;
}
}
} while (STEP_MASK & axislock);
st_reset(); // Immediately force kill steppers and reset step segment buffer. st_reset(); // Immediately force kill steppers and reset step segment buffer.
plan_reset(); // Reset planner buffer. Zero planner positions. Ensure homing motion is cleared. plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions.
plan_sync_position(); // Sync planner position to current machine position
delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate. delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate.
// Reverse direction and reset homing rate for locate cycle(s). // Reverse direction and reset homing rate for locate cycle(s).
homing_rate = settings.homing_feed_rate;
approach = !approach; approach = !approach;
// After first cycle, homing enters locating phase. Shorten search to pull-off distance.
if (approach) {
max_travel = settings.homing_pulloff*HOMING_AXIS_LOCATE_SCALAR;
homing_rate = settings.homing_feed_rate;
} else {
max_travel = settings.homing_pulloff;
homing_rate = settings.homing_seek_rate;
}
} while (n_cycle-- > 0); } while (n_cycle-- > 0);
// The active cycle axes should now be homed and machine limits have been located. By // The active cycle axes should now be homed and machine limits have been located. By
@ -242,10 +275,13 @@ void limits_go_home(uint8_t cycle_mask)
for (idx=0; idx<N_AXIS; idx++) { for (idx=0; idx<N_AXIS; idx++) {
// NOTE: settings.max_travel[] is stored as a negative value. // NOTE: settings.max_travel[] is stored as a negative value.
if (cycle_mask & bit(idx)) { if (cycle_mask & bit(idx)) {
set_axis_position = 0; #ifdef HOMING_FORCE_SET_ORIGIN
#ifndef HOMING_FORCE_SET_ORIGIN set_axis_position = 0;
#else
if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) { if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) {
set_axis_position = lround(settings.max_travel[idx]*settings.steps_per_mm[idx]); set_axis_position = lround((settings.max_travel[idx]+settings.homing_pulloff)*settings.steps_per_mm[idx]);
} else {
set_axis_position = lround(-settings.homing_pulloff*settings.steps_per_mm[idx]);
} }
#endif #endif
@ -269,41 +305,7 @@ void limits_go_home(uint8_t cycle_mask)
} }
plan_sync_position(); // Sync planner position to homed machine position. plan_sync_position(); // Sync planner position to homed machine position.
// Set pull-off motion target. Seperated from above loop if target is dependent on sys.position. // sys.state = STATE_HOMING; // Ensure system state set as homing before returning.
if (settings.homing_pulloff > 0.0) {
for (idx=0; idx<N_AXIS; idx++) {
if (cycle_mask & bit(idx)) {
#ifdef HOMING_FORCE_SET_ORIGIN
target[idx] = settings.homing_pulloff;
if ( bit_isfalse(settings.homing_dir_mask,bit(idx)) ) { target[idx] = -target[idx]; }
#else
if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) {
target[idx] = settings.homing_pulloff+settings.max_travel[idx];
} else {
target[idx] = -settings.homing_pulloff;
}
#endif
} else {
// Non-active cycle axis. Set target to not move during pull-off.
target[idx] = system_convert_axis_steps_to_mpos(sys.position, idx);
}
}
#ifdef USE_LINE_NUMBERS
plan_buffer_line(target, settings.homing_seek_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan motion.
#else
plan_buffer_line(target, settings.homing_seek_rate, false); // Bypass mc_line(). Directly plan motion.
#endif
// Initiate pull-off using main motion control routines.
// TODO : Clean up state routines so that this motion still shows homing state.
sys.state = STATE_IDLE;
bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE_START);
protocol_execute_realtime();
protocol_buffer_synchronize(); // Complete pull-off motion.
}
// Set system state to homing before returning.
sys.state = STATE_HOMING;
} }

View File

@ -26,8 +26,12 @@
// Initialize the limits module // Initialize the limits module
void limits_init(); void limits_init();
// Disables hard limits.
void limits_disable(); void limits_disable();
// Returns limit state as a bit-wise uint8 variable.
uint8_t limits_get_state();
// Perform one portion of the homing cycle based on the input settings. // Perform one portion of the homing cycle based on the input settings.
void limits_go_home(uint8_t cycle_mask); void limits_go_home(uint8_t cycle_mask);

View File

@ -225,9 +225,7 @@ void mc_homing_cycle()
// with machines with limits wired on both ends of travel to one limit pin. // with machines with limits wired on both ends of travel to one limit pin.
// TODO: Move the pin-specific LIMIT_PIN call to limits.c as a function. // TODO: Move the pin-specific LIMIT_PIN call to limits.c as a function.
#ifdef LIMITS_TWO_SWITCHES_ON_AXES #ifdef LIMITS_TWO_SWITCHES_ON_AXES
uint8_t limit_state = (LIMIT_PIN & LIMIT_MASK); if (limits_get_state()) {
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { limit_state ^= LIMIT_MASK; }
if (limit_state) {
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown. mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT));
return; return;

View File

@ -277,8 +277,8 @@ uint8_t plan_check_full_buffer()
#ifdef COREXY #ifdef COREXY
target_steps[A_MOTOR] = lround(target[A_MOTOR]*settings.steps_per_mm[A_MOTOR]); target_steps[A_MOTOR] = lround(target[A_MOTOR]*settings.steps_per_mm[A_MOTOR]);
target_steps[B_MOTOR] = lround(target[B_MOTOR]*settings.steps_per_mm[B_MOTOR]); target_steps[B_MOTOR] = lround(target[B_MOTOR]*settings.steps_per_mm[B_MOTOR]);
block->steps[A_MOTOR] = labs((target_steps[X_AXIS]-pl.position[X_AXIS]) - (target_steps[Y_AXIS]-pl.position[Y_AXIS])); block->steps[A_MOTOR] = labs((target_steps[X_AXIS]-pl.position[X_AXIS]) + (target_steps[Y_AXIS]-pl.position[Y_AXIS]));
block->steps[B_MOTOR] = labs((target_steps[X_AXIS]-pl.position[X_AXIS]) + (target_steps[Y_AXIS]-pl.position[Y_AXIS])); block->steps[B_MOTOR] = labs((target_steps[X_AXIS]-pl.position[X_AXIS]) - (target_steps[Y_AXIS]-pl.position[Y_AXIS]));
#endif #endif
for (idx=0; idx<N_AXIS; idx++) { for (idx=0; idx<N_AXIS; idx++) {
@ -292,9 +292,9 @@ uint8_t plan_check_full_buffer()
} }
block->step_event_count = max(block->step_event_count, block->steps[idx]); block->step_event_count = max(block->step_event_count, block->steps[idx]);
if (idx == A_MOTOR) { if (idx == A_MOTOR) {
delta_mm = ((target_steps[X_AXIS]-pl.position[X_AXIS]) - (target_steps[Y_AXIS]-pl.position[Y_AXIS]))/settings.steps_per_mm[idx];
} else if (idx == B_MOTOR) {
delta_mm = ((target_steps[X_AXIS]-pl.position[X_AXIS]) + (target_steps[Y_AXIS]-pl.position[Y_AXIS]))/settings.steps_per_mm[idx]; delta_mm = ((target_steps[X_AXIS]-pl.position[X_AXIS]) + (target_steps[Y_AXIS]-pl.position[Y_AXIS]))/settings.steps_per_mm[idx];
} else if (idx == B_MOTOR) {
delta_mm = ((target_steps[X_AXIS]-pl.position[X_AXIS]) - (target_steps[Y_AXIS]-pl.position[Y_AXIS]))/settings.steps_per_mm[idx];
} else { } else {
delta_mm = (target_steps[idx] - pl.position[idx])/settings.steps_per_mm[idx]; delta_mm = (target_steps[idx] - pl.position[idx])/settings.steps_per_mm[idx];
} }

View File

@ -60,38 +60,36 @@ void printPgmString(const char *s)
// } // }
void print_uint8_base2(uint8_t n) // Prints an uint8 variable with base and number of desired digits.
void print_unsigned_int8(uint8_t n, uint8_t base, uint8_t digits)
{ {
unsigned char buf[8]; unsigned char buf[digits];
uint8_t i = 0;
for (; i < 8; i++) {
buf[i] = n & 1;
n >>= 1;
}
for (; i > 0; i--)
serial_write('0' + buf[i - 1]);
}
void print_uint8_base10(uint8_t n)
{
if (n == 0) {
serial_write('0');
return;
}
unsigned char buf[3];
uint8_t i = 0; uint8_t i = 0;
while (n > 0) { for (; i < digits; i++) {
buf[i++] = n % 10 + '0'; buf[i] = n % base ;
n /= 10; n /= base;
} }
for (; i > 0; i--) for (; i > 0; i--)
serial_write(buf[i - 1]); serial_write('0' + buf[i - 1]);
}
// Prints an uint8 variable in base 2.
void print_uint8_base2(uint8_t n) {
print_unsigned_int8(n,2,8);
}
// Prints an uint8 variable in base 10.
void print_uint8_base10(uint8_t n)
{
uint8_t digits;
if (n < 10) { digits = 1; }
else if (n < 100) { digits = 2; }
else { digits = 3; }
print_unsigned_int8(n,10,digits);
} }
@ -119,7 +117,7 @@ void printInteger(long n)
{ {
if (n < 0) { if (n < 0) {
serial_write('-'); serial_write('-');
print_uint32_base10((-n)); print_uint32_base10(-n);
} else { } else {
print_uint32_base10(n); print_uint32_base10(n);
} }
@ -194,12 +192,13 @@ void printFloat_RateValue(float n) {
void printFloat_SettingValue(float n) { printFloat(n,N_DECIMAL_SETTINGVALUE); } void printFloat_SettingValue(float n) { printFloat(n,N_DECIMAL_SETTINGVALUE); }
// Debug tool to print free memory in bytes at the called point. Not used otherwise. // Debug tool to print free memory in bytes at the called point.
void printFreeMemory() // NOTE: Keep commented unless using. Part of this function always gets compiled in.
{ // void printFreeMemory()
extern int __heap_start, *__brkval; // {
uint16_t free; // Up to 64k values. // extern int __heap_start, *__brkval;
free = (int) &free - (__brkval == 0 ? (int) &__heap_start : (int) __brkval); // uint16_t free; // Up to 64k values.
printInteger((int32_t)free); // free = (int) &free - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
printString(" "); // printInteger((int32_t)free);
} // printString(" ");
// }

View File

@ -31,8 +31,13 @@ void printInteger(long n);
void print_uint32_base10(uint32_t n); void print_uint32_base10(uint32_t n);
// Prints uint8 variable with base and number of desired digits.
void print_unsigned_int8(uint8_t n, uint8_t base, uint8_t digits);
// Prints an uint8 variable in base 2.
void print_uint8_base2(uint8_t n); void print_uint8_base2(uint8_t n);
// Prints an uint8 variable in base 10.
void print_uint8_base10(uint8_t n); void print_uint8_base10(uint8_t n);
void printFloat(float n, uint8_t decimal_places); void printFloat(float n, uint8_t decimal_places);

View File

@ -136,6 +136,8 @@ void report_feedback_message(uint8_t message_code)
printPgmString(PSTR("Disabled")); break; printPgmString(PSTR("Disabled")); break;
case MESSAGE_SAFETY_DOOR_AJAR: case MESSAGE_SAFETY_DOOR_AJAR:
printPgmString(PSTR("Check Door")); break; printPgmString(PSTR("Check Door")); break;
case MESSAGE_PROGRAM_END:
printPgmString(PSTR("Pgm End")); break;
} }
printPgmString(PSTR("]\r\n")); printPgmString(PSTR("]\r\n"));
} }
@ -420,7 +422,7 @@ void report_realtime_status()
// the system power on location (0,0,0) and work coordinate position (G54 and G92 applied). Eventually // the system power on location (0,0,0) and work coordinate position (G54 and G92 applied). Eventually
// to be added are distance to go on block, processed block id, and feed rate. Also a settings bitmask // to be added are distance to go on block, processed block id, and feed rate. Also a settings bitmask
// for a user to select the desired real-time data. // for a user to select the desired real-time data.
uint8_t i; uint8_t idx;
int32_t current_position[N_AXIS]; // Copy current state of the system position variable int32_t current_position[N_AXIS]; // Copy current state of the system position variable
memcpy(current_position,sys.position,sizeof(sys.position)); memcpy(current_position,sys.position,sizeof(sys.position));
float print_position[N_AXIS]; float print_position[N_AXIS];
@ -445,21 +447,21 @@ void report_realtime_status()
// Report machine position // Report machine position
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_MACHINE_POSITION)) { if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_MACHINE_POSITION)) {
printPgmString(PSTR(",MPos:")); printPgmString(PSTR(",MPos:"));
for (i=0; i< N_AXIS; i++) { for (idx=0; idx< N_AXIS; idx++) {
printFloat_CoordValue(print_position[i]); printFloat_CoordValue(print_position[idx]);
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); } if (idx < (N_AXIS-1)) { printPgmString(PSTR(",")); }
} }
} }
// Report work position // Report work position
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_WORK_POSITION)) { if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_WORK_POSITION)) {
printPgmString(PSTR(",WPos:")); printPgmString(PSTR(",WPos:"));
for (i=0; i< N_AXIS; i++) { for (idx=0; idx< N_AXIS; idx++) {
// Apply work coordinate offsets and tool length offset to current position. // Apply work coordinate offsets and tool length offset to current position.
print_position[i] -= gc_state.coord_system[i]+gc_state.coord_offset[i]; print_position[idx] -= gc_state.coord_system[idx]+gc_state.coord_offset[idx];
if (i == TOOL_LENGTH_OFFSET_AXIS) { print_position[i] -= gc_state.tool_length_offset; } if (idx == TOOL_LENGTH_OFFSET_AXIS) { print_position[idx] -= gc_state.tool_length_offset; }
printFloat_CoordValue(print_position[i]); printFloat_CoordValue(print_position[idx]);
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); } if (idx < (N_AXIS-1)) { printPgmString(PSTR(",")); }
} }
} }
@ -492,14 +494,10 @@ void report_realtime_status()
printFloat_RateValue(st_get_realtime_rate()); printFloat_RateValue(st_get_realtime_rate());
#endif #endif
#ifdef REPORT_LIMIT_PIN_STATE if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_LIMIT_PINS)) {
printPgmString(PSTR(",Lim:")); printPgmString(PSTR(",Lim:"));
uint8_t idx; print_unsigned_int8(limits_get_state(),2,N_AXIS);
for (idx=0; idx<N_AXIS; idx++) { }
if (LIMIT_PIN & get_limit_pin_mask(idx)) { printPgmString(PSTR("1")); }
else { printPgmString(PSTR("0")); }
}
#endif
#ifdef REPORT_CONTROL_PIN_STATE #ifdef REPORT_CONTROL_PIN_STATE
printPgmString(PSTR(",Ctl:")); printPgmString(PSTR(",Ctl:"));

View File

@ -68,6 +68,7 @@
#define MESSAGE_ENABLED 4 #define MESSAGE_ENABLED 4
#define MESSAGE_DISABLED 5 #define MESSAGE_DISABLED 5
#define MESSAGE_SAFETY_DOOR_AJAR 6 #define MESSAGE_SAFETY_DOOR_AJAR 6
#define MESSAGE_PROGRAM_END 7
// Prints system status messages. // Prints system status messages.
void report_status_message(uint8_t status_code); void report_status_message(uint8_t status_code);

View File

@ -44,6 +44,7 @@
#define BITFLAG_RT_STATUS_WORK_POSITION bit(1) #define BITFLAG_RT_STATUS_WORK_POSITION bit(1)
#define BITFLAG_RT_STATUS_PLANNER_BUFFER bit(2) #define BITFLAG_RT_STATUS_PLANNER_BUFFER bit(2)
#define BITFLAG_RT_STATUS_SERIAL_RX bit(3) #define BITFLAG_RT_STATUS_SERIAL_RX bit(3)
#define BITFLAG_RT_STATUS_LIMIT_PINS bit(4)
// Define EEPROM memory address location values for Grbl settings and parameters // Define EEPROM memory address location values for Grbl settings and parameters
// NOTE: The Atmega328p has 1KB EEPROM. The upper half is reserved for parameters and // NOTE: The Atmega328p has 1KB EEPROM. The upper half is reserved for parameters and

View File

@ -324,11 +324,8 @@ ISR(TIMER1_COMPA_vect)
st.exec_block = &st_block_buffer[st.exec_block_index]; st.exec_block = &st_block_buffer[st.exec_block_index];
// Initialize Bresenham line and distance counters // Initialize Bresenham line and distance counters
st.counter_x = (st.exec_block->step_event_count >> 1); st.counter_x = st.counter_y = st.counter_z = (st.exec_block->step_event_count >> 1);
st.counter_y = st.counter_x;
st.counter_z = st.counter_x;
} }
st.dir_outbits = st.exec_block->direction_bits ^ dir_port_invert_mask; st.dir_outbits = st.exec_block->direction_bits ^ dir_port_invert_mask;
#ifdef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING #ifdef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING

View File

@ -252,8 +252,10 @@ float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx)
#ifdef COREXY #ifdef COREXY
if (idx==A_MOTOR) { if (idx==A_MOTOR) {
pos = 0.5*((steps[A_MOTOR] + steps[B_MOTOR])/settings.steps_per_mm[idx]); pos = 0.5*((steps[A_MOTOR] + steps[B_MOTOR])/settings.steps_per_mm[idx]);
} else { // (idx==B_MOTOR) } else if (idx==B_MOTOR) {
pos = 0.5*((steps[A_MOTOR] - steps[B_MOTOR])/settings.steps_per_mm[idx]); pos = 0.5*((steps[A_MOTOR] - steps[B_MOTOR])/settings.steps_per_mm[idx]);
} else {
pos = steps[idx]/settings.steps_per_mm[idx];
} }
#else #else
pos = steps[idx]/settings.steps_per_mm[idx]; pos = steps[idx]/settings.steps_per_mm[idx];

View File

@ -71,7 +71,7 @@
typedef struct { typedef struct {
uint8_t abort; // System abort flag. Forces exit back to main loop for reset. uint8_t abort; // System abort flag. Forces exit back to main loop for reset.
uint8_t state; // Tracks the current state of Grbl. uint8_t state; // Tracks the current state of Grbl.
uint8_t suspend; // System suspend flag. Allows only realtime commands. Used primarily for holds. uint8_t suspend; // System suspend bitflag variable that manages holds, cancels, and safety door.
volatile uint8_t rt_exec_state; // Global realtime executor bitflag variable for state management. See EXEC bitmasks. volatile uint8_t rt_exec_state; // Global realtime executor bitflag variable for state management. See EXEC bitmasks.
volatile uint8_t rt_exec_alarm; // Global realtime executor bitflag variable for setting various alarms. volatile uint8_t rt_exec_alarm; // Global realtime executor bitflag variable for setting various alarms.