Refactored line buffering to eliminate state from motion control and centralize tracking of position. UNTESTED: NEEDS TESTING
This commit is contained in:
parent
cdcc7bf86e
commit
c42741032f
1
main.c
1
main.c
@ -37,7 +37,6 @@ int main(void)
|
||||
settings_init();
|
||||
plan_init(); // initialize the stepper plan subsystem
|
||||
st_init(); // initialize the stepper subsystem
|
||||
mc_init(); // initialize motion control subsystem
|
||||
spindle_init(); // initialize spindle controller
|
||||
gc_init(); // initialize gcode-parser
|
||||
|
||||
|
@ -29,13 +29,6 @@
|
||||
#include "stepper_plan.h"
|
||||
#include "wiring_serial.h"
|
||||
|
||||
// The current position of the tool in absolute steps
|
||||
int32_t position[3];
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
clear_vector(position);
|
||||
}
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
@ -48,31 +41,7 @@ void mc_dwell(uint32_t milliseconds)
|
||||
// 1/feed_rate minutes.
|
||||
void mc_line(double x, double y, double z, double feed_rate, int invert_feed_rate)
|
||||
{
|
||||
uint8_t axis; // loop variable
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
int32_t steps[3]; // The target line in relative steps
|
||||
|
||||
target[X_AXIS] = lround(x*settings.steps_per_mm[0]);
|
||||
target[Y_AXIS] = lround(y*settings.steps_per_mm[1]);
|
||||
target[Z_AXIS] = lround(z*settings.steps_per_mm[2]);
|
||||
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
steps[axis] = target[axis]-position[axis];
|
||||
}
|
||||
|
||||
// Ask old Phytagoras to estimate how many mm our next move is going to take us
|
||||
double millimeters_of_travel = sqrt(
|
||||
square(steps[X_AXIS]/settings.steps_per_mm[0]) +
|
||||
square(steps[Y_AXIS]/settings.steps_per_mm[1]) +
|
||||
square(steps[Z_AXIS]/settings.steps_per_mm[2]));
|
||||
if (invert_feed_rate) {
|
||||
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS], lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate),
|
||||
millimeters_of_travel);
|
||||
} else {
|
||||
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS],
|
||||
lround((millimeters_of_travel/feed_rate)*1000000), millimeters_of_travel);
|
||||
}
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
st_buffer_line(x, y, z, feed_rate, invert_feed_rate);
|
||||
}
|
||||
|
||||
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
@ -85,6 +54,8 @@ void mc_line(double x, double y, double z, double feed_rate, int invert_feed_rat
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate)
|
||||
{
|
||||
int32_t position[3];
|
||||
st_get_position_steps(&position);
|
||||
int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
||||
plan_set_acceleration_manager_enabled(FALSE); // disable acceleration management for the duration of the arc
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
||||
@ -119,5 +90,4 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
|
||||
void mc_go_home()
|
||||
{
|
||||
st_go_home();
|
||||
clear_vector(position); // By definition this is location [0, 0, 0]
|
||||
}
|
||||
|
@ -23,10 +23,6 @@
|
||||
|
||||
#include <avr/io.h>
|
||||
|
||||
|
||||
// Initializes the motion_control subsystem resources
|
||||
void mc_init();
|
||||
|
||||
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
||||
// (1 minute)/feed_rate time.
|
||||
|
@ -110,12 +110,16 @@ inline void trapezoid_generator_tick() {
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
||||
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
|
||||
plan_buffer_line(steps_x, steps_y, steps_z, microseconds, millimeters);
|
||||
void st_buffer_line(double x, double y, double z, double feed_rate, int invert_feed_rate) {
|
||||
plan_buffer_line(x, y, z, feed_rate, invert_feed_rate);
|
||||
// Ensure that block processing is running by enabling The Stepper Driver Interrupt
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
void st_get_position_steps(int32_t (*vector)[3]) {
|
||||
memcpy(vector, position, sizeof(position)); // vector[] = position[]
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is executed at the rate set with
|
||||
// config_step_timer. It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
// It is supported by The Stepper Port Reset Interrupt which it uses to reset the stepper port after each pulse.
|
||||
|
@ -29,7 +29,10 @@ void st_init();
|
||||
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
||||
// steps. Microseconds specify how many microseconds the move should take to perform.
|
||||
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate, double millimeters);
|
||||
void st_buffer_line(double x, double y, double z, double feed_rate, int invert_feed_rate);
|
||||
|
||||
// Copy the current absolute position in steps into the provided vector
|
||||
void st_get_position_steps(int32_t (*vector)[3]);
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize();
|
||||
|
@ -65,6 +65,9 @@ block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructio
|
||||
volatile int block_buffer_head; // Index of the next block to be pushed
|
||||
volatile int block_buffer_tail; // Index of the block to process now
|
||||
|
||||
// The current position of the tool in absolute steps
|
||||
int32_t position[3];
|
||||
|
||||
static uint8_t acceleration_manager_enabled; // Acceleration management active?
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||
@ -334,6 +337,7 @@ void plan_init() {
|
||||
block_buffer_head = 0;
|
||||
block_buffer_tail = 0;
|
||||
plan_set_acceleration_manager_enabled(TRUE);
|
||||
clear_vector(position);
|
||||
}
|
||||
|
||||
void plan_set_acceleration_manager_enabled(int enabled) {
|
||||
@ -347,10 +351,18 @@ int plan_is_acceleration_manager_enabled() {
|
||||
return(acceleration_manager_enabled);
|
||||
}
|
||||
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
||||
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
|
||||
void plan_buffer_line(double x, double y, double z, double feed_rate, int invert_feed_rate) {
|
||||
// The target position of the tool in absolute steps
|
||||
|
||||
// Calculate target position in absolute steps
|
||||
int32_t target[3];
|
||||
target[0] = lround(x*settings.steps_per_mm[0]);
|
||||
target[1] = lround(y*settings.steps_per_mm[1]);
|
||||
target[2] = lround(y*settings.steps_per_mm[2]);
|
||||
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (block_buffer_head + 1) % BLOCK_BUFFER_SIZE;
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
@ -359,25 +371,37 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
|
||||
// Prepare to set up new block
|
||||
block_t *block = &block_buffer[block_buffer_head];
|
||||
// Number of steps for each axis
|
||||
block->steps_x = labs(steps_x);
|
||||
block->steps_y = labs(steps_y);
|
||||
block->steps_z = labs(steps_z);
|
||||
block->steps_x = labs(position[0]-target[0]);
|
||||
block->steps_y = labs(position[1]-target[1]);
|
||||
block->steps_z = labs(position[2]-target[2]);
|
||||
block->millimeters = sqrt(
|
||||
square(block->steps_x/settings.steps_per_mm[0])+
|
||||
square(block->steps_y/settings.steps_per_mm[1])+
|
||||
square(block->steps_z/settings.steps_per_mm[2]));
|
||||
|
||||
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count == 0) { return; };
|
||||
|
||||
uint32_t microseconds;
|
||||
if (!invert_feed_rate) {
|
||||
microseconds = lround((block->millimeters/feed_rate)*1000000);
|
||||
} else {
|
||||
microseconds = lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate);
|
||||
}
|
||||
|
||||
// Calculate speed in mm/minute for each axis
|
||||
double multiplier = 60.0*1000000.0/microseconds;
|
||||
// printInteger(multiplier*1000); printString("<-multi\n\r");
|
||||
block->speed_x = steps_x*multiplier/settings.steps_per_mm[0];
|
||||
block->speed_y = steps_y*multiplier/settings.steps_per_mm[1];
|
||||
block->speed_z = steps_z*multiplier/settings.steps_per_mm[2];
|
||||
block->nominal_speed = millimeters*multiplier;
|
||||
block->speed_x = x*multiplier;
|
||||
block->speed_y = y*multiplier;
|
||||
block->speed_z = z*multiplier;
|
||||
block->nominal_speed = block->millimeters*multiplier;
|
||||
// printInteger(millimeters*1000); printString("<-mm\n\r");
|
||||
// printInteger(block->nominal_speed*1000); printString("<-ns\n\r");
|
||||
block->nominal_rate = ceil(block->step_event_count*multiplier);
|
||||
// printInteger(block->nominal_rate*1000); printString("<-nr\n\r");
|
||||
// printInteger((uint16_t)block); printString("<-addr\n\r");
|
||||
block->millimeters = millimeters;
|
||||
block->entry_factor = 0.0;
|
||||
|
||||
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
|
||||
@ -386,13 +410,14 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
|
||||
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
|
||||
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
|
||||
// specifically for each line to compensate for this phenomenon:
|
||||
double travel_per_step = millimeters/block->step_event_count;
|
||||
double travel_per_step = block->millimeters/block->step_event_count;
|
||||
block->rate_delta = ceil(
|
||||
((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
|
||||
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
|
||||
if (acceleration_manager_enabled) {
|
||||
// compute a preliminary conservative acceleration trapezoid
|
||||
double safe_speed_factor = factor_for_safe_speed(block);
|
||||
calculate_trapezoid_for_block(block, safe_speed_factor, safe_speed_factor); // compute a conservative acceleration trapezoid for now
|
||||
calculate_trapezoid_for_block(block, safe_speed_factor, safe_speed_factor);
|
||||
} else {
|
||||
block->initial_rate = block->nominal_rate;
|
||||
block->accelerate_until = 0;
|
||||
@ -402,16 +427,15 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (steps_x < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (steps_y < 0) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (steps_z < 0) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
// Move buffer head
|
||||
block_buffer_head = next_buffer_head;
|
||||
if (target[0] < position[0]) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (target[1] < position[1]) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (target[2] < position[2]) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
|
||||
if (acceleration_manager_enabled) {
|
||||
planner_recalculate();
|
||||
} else {
|
||||
calculate_trapezoid_for_block(block, 1.0, 1.0);
|
||||
}
|
||||
// Move buffer head
|
||||
block_buffer_head = next_buffer_head;
|
||||
// Update position
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
|
||||
if (acceleration_manager_enabled) { planner_recalculate(); }
|
||||
}
|
||||
|
||||
|
@ -18,6 +18,9 @@
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
// This module is to be considered a sub-module of stepper.c. Please don't include
|
||||
// this file from any other module.
|
||||
|
||||
#ifndef stepper_plan_h
|
||||
#define stepper_plan_h
|
||||
|
||||
@ -56,6 +59,7 @@ typedef struct {
|
||||
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
extern volatile int block_buffer_head; // Index of the next block to be pushed
|
||||
extern volatile int block_buffer_tail; // Index of the block to process now
|
||||
extern int32_t position[3];
|
||||
|
||||
// Initialize the motion plan subsystem
|
||||
void plan_init();
|
||||
@ -65,7 +69,7 @@ void plan_init();
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
||||
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters);
|
||||
void plan_buffer_line(double x, double y, double z, double feed_rate, int invert_feed_rate);
|
||||
|
||||
// Enables acceleration-management for upcoming blocks
|
||||
void plan_set_acceleration_manager_enabled(int enabled);
|
||||
|
Loading…
Reference in New Issue
Block a user