Added runtime configurable global settings with eeprom persitence
This commit is contained in:
@ -51,9 +51,9 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
int32_t steps[3]; // The target line in relative steps
|
||||
|
||||
target[X_AXIS] = lround(x*X_STEPS_PER_MM);
|
||||
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
|
||||
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
|
||||
target[X_AXIS] = lround(x*settings.steps_per_mm[0]);
|
||||
target[Y_AXIS] = lround(y*settings.steps_per_mm[1]);
|
||||
target[Z_AXIS] = lround(z*settings.steps_per_mm[2]);
|
||||
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
steps[axis] = target[axis]-position[axis];
|
||||
@ -64,9 +64,9 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
} else {
|
||||
// Ask old Phytagoras to estimate how many mm our next move is going to take us
|
||||
double millimeters_of_travel = sqrt(
|
||||
square(steps[X_AXIS]/X_STEPS_PER_MM) +
|
||||
square(steps[Y_AXIS]/Y_STEPS_PER_MM) +
|
||||
square(steps[Z_AXIS]/Z_STEPS_PER_MM));
|
||||
square(steps[X_AXIS]/settings.steps_per_mm[0]) +
|
||||
square(steps[Y_AXIS]/settings.steps_per_mm[1]) +
|
||||
square(steps[Z_AXIS]/settings.steps_per_mm[2]));
|
||||
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS],
|
||||
lround((millimeters_of_travel/feed_rate)*1000000));
|
||||
}
|
||||
@ -80,14 +80,12 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
|
||||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
||||
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
|
||||
|
||||
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate)
|
||||
{
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
||||
if (millimeters_of_travel == 0.0) { return; }
|
||||
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
|
||||
uint16_t segments = ceil(millimeters_of_travel/settings.mm_per_arc_segment);
|
||||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
||||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
||||
// all segments.
|
||||
@ -97,8 +95,8 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
|
||||
// The linear motion for each segment
|
||||
double linear_per_segment = linear_travel/segments;
|
||||
// Compute the center of this circle
|
||||
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
|
||||
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
|
||||
double center_x = (position[axis_1]/settings.steps_per_mm[axis_1])-sin(theta)*radius;
|
||||
double center_y = (position[axis_2]/settings.steps_per_mm[axis_2])-cos(theta)*radius;
|
||||
// a vector to track the end point of each segment
|
||||
double target[3];
|
||||
int i;
|
||||
|
Reference in New Issue
Block a user