added basic accelleration management with trapezoid accelleration profiles but no look ahead optimization (coming next patch)

This commit is contained in:
Simen Svale Skogsrud 2011-01-14 12:10:18 +01:00
parent e0f3dcbe43
commit b628a4aabf
14 changed files with 129 additions and 108 deletions

View File

@ -31,7 +31,7 @@ DEVICE = atmega328p
CLOCK = 16000000 CLOCK = 16000000
PROGRAMMER = -c avrisp2 -P usb PROGRAMMER = -c avrisp2 -P usb
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o \ OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o \
eeprom.o config.o accelleration.o eeprom.o config.o
# FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m # FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m
FUSES = -U hfuse:w:0xd2:m -U lfuse:w:0xff:m FUSES = -U hfuse:w:0xd2:m -U lfuse:w:0xff:m

View File

@ -27,20 +27,20 @@
#endif #endif
struct AccellerationProfile { struct AccellerationProfile {
float initial_scaler; double initial_scaler;
float final_scaler; double final_scaler;
float accelleration_delta; double accelleration_delta;
float decelleration_delta; double decelleration_delta;
uint32_t accellerate_ticks; uint32_t accellerate_ticks;
uint32_t plateau_ticks; uint32_t plateau_ticks;
}; };
struct AccellerationProfileSegment { struct AccellerationProfileSegment {
float v_entry[3]; double v_entry[3];
float v_ideal[3]; double v_ideal[3];
float v_exit[3]; double v_exit[3];
float distance; double distance;
float f_entry, f_exit; double f_entry, f_exit;
}; };
struct AccellerationProfileBuilder { struct AccellerationProfileBuilder {

View File

@ -32,19 +32,10 @@ void reset_settings() {
settings.steps_per_mm[2] = Z_STEPS_PER_MM; settings.steps_per_mm[2] = Z_STEPS_PER_MM;
settings.pulse_microseconds = STEP_PULSE_MICROSECONDS; settings.pulse_microseconds = STEP_PULSE_MICROSECONDS;
settings.default_feed_rate = DEFAULT_FEEDRATE; settings.default_feed_rate = DEFAULT_FEEDRATE;
<<<<<<< Updated upstream
settings.default_seek_rate = RAPID_FEEDRATE; settings.default_seek_rate = RAPID_FEEDRATE;
settings.dead_feed_rate = DEFAULT_FEEDRATE/5; settings.acceleration = DEFAULT_ACCELERATION;
settings.acceleration = DEFAULT_FEEDRATE/100;
settings.mm_per_arc_segment = MM_PER_ARC_SEGMENT; settings.mm_per_arc_segment = MM_PER_ARC_SEGMENT;
settings.invert_mask = STEPPING_INVERT_MASK; settings.invert_mask = STEPPING_INVERT_MASK;
=======
settings.seek_rate = DEFAULT_SEEKRATE;
settings.mm_per_arc_segment = DEFAULT_MM_PER_ARC_SEGMENT;
settings.invert_mask = 0;
settings.max_jerk = DEFAULT_MAX_JERK;
settings.accelleration = DEFAULT_ACCELLERATION;
>>>>>>> Stashed changes
} }
void dump_settings() { void dump_settings() {
@ -53,15 +44,13 @@ void dump_settings() {
printPgmString(PSTR(" (steps/mm y)\r\n$2 = ")); printFloat(settings.steps_per_mm[2]); printPgmString(PSTR(" (steps/mm y)\r\n$2 = ")); printFloat(settings.steps_per_mm[2]);
printPgmString(PSTR(" (steps/mm z)\r\n$3 = ")); printInteger(settings.pulse_microseconds); printPgmString(PSTR(" (steps/mm z)\r\n$3 = ")); printInteger(settings.pulse_microseconds);
printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate); printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate);
printPgmString(PSTR(" (mm/sec default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate); printPgmString(PSTR(" (mm/min default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate);
printPgmString(PSTR(" (mm/sec default seek rate)\r\n$7 = ")); printFloat(settings.dead_feed_rate); printPgmString(PSTR(" (mm/min default seek rate)\r\n$6 = ")); printFloat(settings.mm_per_arc_segment);
printPgmString(PSTR(" (mm/sec max start and stop feed rate)\r\n$8 = ")); printFloat(settings.mm_per_arc_segment); printPgmString(PSTR(" (mm/min^2 max acceleration)\r\n$7 = ")); printFloat(settings.acceleration);
printPgmString(PSTR(" (mm/sec^2 max acceleration)\r\n$9 = ")); printFloat(settings.acceleration); printPgmString(PSTR(" (mm/arc segment)\r\n$8 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (mm/arc segment)\r\n$10 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2); printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2);
printPgmString(PSTR(")\n\r$8 = ")); printFloat(settings.max_jerk); printPgmString(PSTR(")\r\n$9 = ")); printFloat(settings.acceleration);
printPgmString(PSTR(" (max jerk in delta mm/second)\r\n$9 = ")); printFloat(settings.accelleration); printPgmString(PSTR(" (acceleration in mm/min^2)"));
printPgmString(PSTR(" (accelleration in mm/second^2)"));
printPgmString(PSTR("\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n")); printPgmString(PSTR("\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n"));
} }
@ -88,19 +77,11 @@ void store_setting(int parameter, double value) {
settings.steps_per_mm[parameter] = value; break; settings.steps_per_mm[parameter] = value; break;
case 3: settings.pulse_microseconds = round(value); break; case 3: settings.pulse_microseconds = round(value); break;
case 4: settings.default_feed_rate = value; break; case 4: settings.default_feed_rate = value; break;
<<<<<<< Updated upstream
case 5: settings.default_seek_rate = value; break; case 5: settings.default_seek_rate = value; break;
case 6: settings.dead_feed_rate = value; break;
case 8: settings.mm_per_arc_segment = value; break;
case 9: settings.acceleration = value; break;
case 10: settings.invert_mask = trunc(value); break;
=======
case 5: settings.seek_rate = value; break;
case 6: settings.mm_per_arc_segment = value; break; case 6: settings.mm_per_arc_segment = value; break;
case 7: settings.invert_mask = trunc(value); break; case 7: settings.acceleration = value; break;
case 8: settings.max_jerk = value; break; case 8: settings.invert_mask = trunc(value); break;
case 9: settings.accelleration = fabs(value); break; case 9: settings.acceleration = fabs(value); break;
>>>>>>> Stashed changes
default: default:
printPgmString(PSTR("Unknown parameter\r\n")); printPgmString(PSTR("Unknown parameter\r\n"));
return; return;

View File

@ -71,11 +71,7 @@ struct Settings {
double default_seek_rate; double default_seek_rate;
uint8_t invert_mask; uint8_t invert_mask;
double mm_per_arc_segment; double mm_per_arc_segment;
<<<<<<< Updated upstream double acceleration;
=======
double max_jerk;
>>>>>>> Stashed changes
double accelleration;
}; };
struct Settings settings; struct Settings settings;
@ -100,8 +96,7 @@ void store_setting(int parameter, double value);
#define RAPID_FEEDRATE 480.0 // in millimeters per minute #define RAPID_FEEDRATE 480.0 // in millimeters per minute
#define DEFAULT_FEEDRATE 480.0 #define DEFAULT_FEEDRATE 480.0
#define DEFAULT_MAX_JERK 10.0 #define DEFAULT_ACCELERATION (DEFAULT_FEEDRATE/100.0)
#define DEFAULT_ACCELLERATION 0.1
// Use this line for default operation (step-pulses high) // Use this line for default operation (step-pulses high)
#define STEPPING_INVERT_MASK 0 #define STEPPING_INVERT_MASK 0

View File

@ -116,7 +116,7 @@ void gc_init() {
gc.absolute_mode = TRUE; gc.absolute_mode = TRUE;
} }
inline float to_millimeters(double value) { inline double to_millimeters(double value) {
return(gc.inches_mode ? (value * INCHES_PER_MM) : value); return(gc.inches_mode ? (value * INCHES_PER_MM) : value);
} }
@ -138,7 +138,7 @@ double theta(double x, double y)
} }
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase // Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floats (no whitespace). // characters and signed floating point values (no whitespace).
uint8_t gc_execute_line(char *line) { uint8_t gc_execute_line(char *line) {
int counter = 0; int counter = 0;
char letter; char letter;

View File

@ -45,7 +45,7 @@ void mc_dwell(uint32_t milliseconds)
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in // unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// 1/feed_rate minutes. // 1/feed_rate minutes.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate) void mc_line(double x, double y, double z, double feed_rate, int invert_feed_rate)
{ {
uint8_t axis; // loop variable uint8_t axis; // loop variable
int32_t target[3]; // The target position in absolute steps int32_t target[3]; // The target position in absolute steps
@ -108,8 +108,7 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
theta += theta_per_segment; theta += theta_per_segment;
target[axis_1] = center_x+sin(theta)*radius; target[axis_1] = center_x+sin(theta)*radius;
target[axis_2] = center_y+cos(theta)*radius; target[axis_2] = center_y+cos(theta)*radius;
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate, mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate);
settings.mm_per_arc_segment);
} }
} }

View File

@ -29,7 +29,7 @@ void mc_init();
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in // unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time. // (1 minute)/feed_rate time.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate); void mc_line(double x, double y, double z, double feed_rate, int invert_feed_rate);
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc, // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the

View File

@ -20,42 +20,42 @@
// Estimate the maximum speed at a given distance when you need to reach the given // Estimate the maximum speed at a given distance when you need to reach the given
// target_velocity with max_accelleration. // target_velocity with max_acceleration.
float estimate_max_speed(float max_accelleration, float target_velocity, float distance) { double estimate_max_speed(double max_acceleration, double target_velocity, double distance) {
return(sqrt(-2*max_accelleration*distance+target_velocity*target_velocity)) return(sqrt(-2*max_acceleration*distance+target_velocity*target_velocity))
} }
// At what distance must we start accellerating/braking to reach target_speed from current_speed given the // At what distance must we start accelerating/braking to reach target_speed from current_speed given the
// specified constant accelleration. // specified constant acceleration.
float estimate_brake_distance(float current_speed, float target_speed, float acceleration) { double estimate_acceleration_distance(double current_speed, double target_speed, double acceleration) {
return((target_speed*target_speed-current_speed*current_speed)/(2*acceleration)); return((target_speed*target_speed-current_speed*current_speed)/(2*acceleration));
} }
// Calculate feed rate in length-units/second for a single axis // Calculate feed rate in length-units/second for a single axis
float axis_feed_rate(float steps_per_stepping, uint32_t stepping_rate, float steps_per_unit) { double axis_feed_rate(double steps_per_stepping, uint32_t stepping_rate, double steps_per_unit) {
if (stepping_rate == 0) { return(0.0); } if (stepping_rate == 0) { return(0.0); }
return((TICKS_PER_MICROSECOND*1000000)*steps_per_stepping/(stepping_rate*steps_per_unit)); return((TICKS_PER_MICROSECOND*1000000)*steps_per_stepping/(stepping_rate*steps_per_unit));
} }
// The 'swerve' of a joint is equal to the maximum accelleration of any single // The 'swerve' of a joint is equal to the maximum acceleration of any single
// single axis in the corner between the outgoing and the incoming line. Accelleration control // single axis in the corner between the outgoing and the incoming line. Accelleration control
// will regulate speed to avoid excessive swerve. // will regulate speed to avoid excessive swerve.
float calculate_swerve(struct Line* outgoing, struct Line* incoming) { double calculate_swerve(struct Line* outgoing, struct Line* incoming) {
float x_swerve = abs( double x_swerve = abs(
axis_feed_rate( axis_feed_rate(
((float)incoming->steps_x)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[X_AXIS]) ((double)incoming->steps_x)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[X_AXIS])
- axis_feed_rate( - axis_feed_rate(
((float)incoming->steps_x)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[X_AXIS])); ((double)incoming->steps_x)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[X_AXIS]));
float y_swerve = abs( double y_swerve = abs(
axis_feed_rate( axis_feed_rate(
((float)incoming->steps_y)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[Y_AXIS]) ((double)incoming->steps_y)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[Y_AXIS])
- axis_feed_rate( - axis_feed_rate(
((float)incoming->steps_y)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[Y_AXIS])); ((double)incoming->steps_y)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[Y_AXIS]));
float z_swerve = abs( double z_swerve = abs(
axis_feed_rate( axis_feed_rate(
((float)incoming->steps_z)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[Z_AXIS]) ((double)incoming->steps_z)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[Z_AXIS])
- axis_feed_rate( - axis_feed_rate(
((float)incoming->steps_z)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[Z_AXIS])); ((double)incoming->steps_z)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[Z_AXIS]));
return max(x_swerve, max(y_swerve, z_swerve)); return max(x_swerve, max(y_swerve, z_swerve));
} }

View File

@ -41,10 +41,10 @@
#define Y_AXIS 1 #define Y_AXIS 1
#define Z_AXIS 2 #define Z_AXIS 2
void scale_vector(float *target, float *source, float multiplier) { // void scale_vector(double *target, double *source, double multiplier) {
target[0] = source[0]*multiplier; // target[0] = source[0]*multiplier;
target[1] = source[1]*multiplier; // target[1] = source[1]*multiplier;
target[2] = source[2]*multiplier; // target[2] = source[2]*multiplier;
} // }
#endif #endif

View File

@ -1,3 +1,4 @@
socat -d -d READLINE /dev/tty.usbserial-A9007QcR,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1 socat -d -d READLINE /dev/tty.usbserial-A700e0GO,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
#socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1 #socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1

View File

@ -25,7 +25,7 @@ if ARGV.empty?
end end
# SerialPort.open('/dev/tty.FireFly-A964-SPP-1', 115200) do |sp| # SerialPort.open('/dev/tty.FireFly-A964-SPP-1', 115200) do |sp|
SerialPort.open('/dev/tty.usbserial-A9007QcR', 9600) do |sp| SerialPort.open('/dev/tty.usbserial-A700e0GO', 9600) do |sp|
sp.write("\r\n\r\n"); sp.write("\r\n\r\n");
sleep 1 sleep 1

103
stepper.c
View File

@ -28,7 +28,6 @@
#include <stdlib.h> #include <stdlib.h>
#include <util/delay.h> #include <util/delay.h>
#include "nuts_bolts.h" #include "nuts_bolts.h"
#include "acceleration.h"
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include "wiring_serial.h" #include "wiring_serial.h"
@ -43,16 +42,11 @@
void set_step_events_per_minute(uint32_t steps_per_minute); void set_step_events_per_minute(uint32_t steps_per_minute);
void update_acceleration_plan() {
// Store the current
int initial_buffer_tail = block_buffer_tail;
}
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
#define ACCELERATION_TICKS_PER_SECOND 10 #define ACCELERATION_TICKS_PER_SECOND 10
#define MINIMAL_STEP_RATE (ACCELERATION_TICKS_PER_SECOND*5)
#define CYCLES_PER_ACCELERATION_TICK ((TICKS_PER_MICROSECOND*1000000)/ACCELERATION_TICKS_PER_SECOND) #define CYCLES_PER_ACCELERATION_TICK ((TICKS_PER_MICROSECOND*1000000)/ACCELERATION_TICKS_PER_SECOND)
// This struct is used when buffering the setup for each linear movement // This struct is used when buffering the setup for each linear movement
@ -64,7 +58,7 @@ struct Block {
int32_t step_event_count; // The number of step events required to complete this block int32_t step_event_count; // The number of step events required to complete this block
uint32_t nominal_rate; // The nominal step rate for this block in step_events/minute uint32_t nominal_rate; // The nominal step rate for this block in step_events/minute
// Values used for acceleration management // Values used for acceleration management
float speed_x, speed_y, speed_z; // Nominal mm/minute for each axis double speed_x, speed_y, speed_z; // Nominal mm/minute for each axis
uint32_t initial_rate; // The jerk-adjusted step rate at start of block uint32_t initial_rate; // The jerk-adjusted step rate at start of block
int16_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive) int16_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive)
uint16_t accelerate_ticks; // The number of acceleration-ticks to accelerate uint16_t accelerate_ticks; // The number of acceleration-ticks to accelerate
@ -99,18 +93,58 @@ uint32_t trapezoid_tick_cycle_counter;
// time -----> // time ----->
// //
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates for // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates for
// block->accelerate_ticks then stays up for block->plateau_ticks and decelerates for the rest of the block // block->accelerate_ticks by block->rate_delta each tick, then stays up for block->plateau_ticks and
// until the trapezoid generator is reset for the next block. The slope of acceleration is always // decelerates for the rest of the block until the trapezoid generator is reset for the next block.
// +/- block->rate_delta. Any stage may be skipped by setting the duration to 0 ticks. // The slope of acceleration is always +/- block->rate_delta. Any stage may be skipped by setting the
// duration to 0 ticks.
#define TRAPEZOID_STAGE_ACCELERATING 0 #define TRAPEZOID_STAGE_ACCELERATING 0
#define TRAPEZOID_STAGE_PLATEAU 1 #define TRAPEZOID_STAGE_PLATEAU 1
#define TRAPEZOID_STAGE_DECELERATING 2 #define TRAPEZOID_STAGE_DECELERATING 2
uint8_t trapezoid_stage = TRAPEZOID_STAGE_IDLE; uint8_t trapezoid_stage;
uint16_t trapezoid_stage_ticks; uint16_t trapezoid_stage_ticks;
uint32_t trapezoid_rate; uint32_t trapezoid_rate;
int16_t trapezoid_delta; int16_t trapezoid_delta;
inline uint32_t estimate_acceleration_distance(int32_t current_rate, int32_t target_rate, int32_t acceleration) {
return((target_rate*target_rate-current_rate*current_rate)/(2*acceleration));
}
inline uint32_t estimate_acceleration_ticks(int32_t start_rate, int32_t acceleration_per_tick, int32_t step_events) {
return(
round(
(sqrt(2*acceleration_per_tick*step_events+(start_rate*start_rate))-start_rate)/
acceleration_per_tick));
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
// In practice both factors must be in the range 0 ... 1.0
void calculate_trapezoid_for_block(struct Block *block, double entry_factor, double exit_factor) {
block->initial_rate = max(round(block->nominal_rate*entry_factor),MINIMAL_STEP_RATE);
int32_t final_rate = max(round(block->nominal_rate*entry_factor),MINIMAL_STEP_RATE);
int32_t acceleration_per_second = block->rate_delta*ACCELERATION_TICKS_PER_SECOND;
int32_t acceleration_steps =
estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second);
int32_t decelleration_steps =
estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_second);
// Check if the acceleration and decelleration periods overlap. In that case nominal_speed will
// never be reached but that's okay. Just truncate both periods proportionally so that they
// fit within the allotted step events.
int32_t plateau_steps = block->step_event_count-acceleration_steps-decelleration_steps;
if (plateau_steps < 0) {
int32_t half_overlap_region = abs(plateau_steps)/2;
plateau_steps = 0;
acceleration_steps = max(acceleration_steps-half_overlap_region,0);
decelleration_steps = max(decelleration_steps-half_overlap_region,0);
}
block->accelerate_ticks = estimate_acceleration_ticks(block->initial_rate, block->rate_delta, acceleration_steps);
if (plateau_steps) {
block->plateau_ticks = round(1.0*plateau_steps/(block->nominal_rate*ACCELERATION_TICKS_PER_SECOND));
} else {
block->plateau_ticks = 0;
}
}
// Call this when a new block is started // Call this when a new block is started
inline void reset_trapezoid_generator() { inline void reset_trapezoid_generator() {
trapezoid_stage = TRAPEZOID_STAGE_ACCELERATING; trapezoid_stage = TRAPEZOID_STAGE_ACCELERATING;
@ -124,21 +158,22 @@ inline void reset_trapezoid_generator() {
// interrupt. It can be assumed that the trapezoid-generator-parameters and the // interrupt. It can be assumed that the trapezoid-generator-parameters and the
// current_block stays untouched by outside handlers for the duration of this function call. // current_block stays untouched by outside handlers for the duration of this function call.
inline void trapezoid_generator_tick() { inline void trapezoid_generator_tick() {
if (trapezoid_stage_ticks) {
trapezoid_stage_ticks--;
if (trapezoid_delta) {
trapezoid_rate += trapezoid_delta;
set_step_events_per_minute(trapezoid_rate);
}
} else {
// Is there a block currently in execution? // Is there a block currently in execution?
if(!current_block) {return;} if(!current_block) {return;}
// Trapezoid stage complete, move on
if (trapezoid_stage_ticks) {
trapezoid_rate += trapezoid_delta;
trapezoid_stage_ticks--;
set_step_events_per_minute(trapezoid_rate);
} else {
// Stage complete, move on
if(trapezoid_stage == TRAPEZOID_STAGE_ACCELERATING) { if(trapezoid_stage == TRAPEZOID_STAGE_ACCELERATING) {
// Progress to plateau stage // Progress to plateau stage
trapezoid_delta = 0; trapezoid_delta = 0;
trapezoid_stage_ticks = current_block->plateau_ticks; trapezoid_stage_ticks = current_block->plateau_ticks;
trapezoid_stage = TRAPEZOID_STAGE_PLATEAU trapezoid_stage = TRAPEZOID_STAGE_PLATEAU;
} elsif (trapezoid_stage == TRAPEZOID_STAGE_PLATEAU) { } else if (trapezoid_stage == TRAPEZOID_STAGE_PLATEAU) {
// Progress to deceleration stage // Progress to deceleration stage
trapezoid_delta = -current_block->rate_delta; trapezoid_delta = -current_block->rate_delta;
trapezoid_stage_ticks = 0xffff; // "forever" until the block is complete trapezoid_stage_ticks = 0xffff; // "forever" until the block is complete
@ -147,8 +182,6 @@ inline void trapezoid_generator_tick() {
} }
} }
void config_step_timer(uint32_t microseconds);
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in // Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
@ -165,15 +198,27 @@ void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t
block->steps_y = labs(steps_y); block->steps_y = labs(steps_y);
block->steps_z = labs(steps_z); block->steps_z = labs(steps_z);
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z)); block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
// block->travel_per_step = (1.0*millimeters)/block->step_event_count;
// Bail if this is a zero-length block // Bail if this is a zero-length block
if (block->step_event_count == 0) { return; }; if (block->step_event_count == 0) { return; };
// Calculate speed in steps/second for each axis // Calculate speed in mm/minute for each axis
float multiplier = 60.0*1000000.0/microseconds; double multiplier = 60.0*1000000.0/microseconds;
block->speed_x = block->steps_x*multiplier/settings.steps_per_mm[0]; block->speed_x = block->steps_x*multiplier/settings.steps_per_mm[0];
block->speed_y = block->steps_y*multiplier/settings.steps_per_mm[1]; block->speed_y = block->steps_y*multiplier/settings.steps_per_mm[1];
block->speed_z = block->steps_z*multiplier/settings.steps_per_mm[2]; block->speed_z = block->steps_z*multiplier/settings.steps_per_mm[2];
block->nominal_rate = round(block->step_event_count*multiplier); block->nominal_rate = max(round(block->step_event_count*multiplier), MINIMAL_STEP_RATE);
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
// average travel per step event changes. For a line along one axis the travel per step event
// is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
// specifically for each line to compensate for this phenomenon:
double travel_per_step = (1.0*millimeters)/block->step_event_count;
block->rate_delta = round(
(settings.acceleration/(60.0*ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/min per acceleration_tick
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
calculate_trapezoid_for_block(block,0,0); // compute a default trapezoid
// Compute direction bits for this block // Compute direction bits for this block
block->direction_bits = 0; block->direction_bits = 0;
if (steps_x < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); } if (steps_x < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
@ -302,8 +347,8 @@ void st_init()
TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler
TIMSK2 |= (1<<TOIE2); TIMSK2 |= (1<<TOIE2);
// Just set the step_timer to something serviceably lazy DISABLE_STEPPER_DRIVER_INTERRUPT();
config_step_timer(20000);
// set enable pin // set enable pin
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT; STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;

View File

@ -29,7 +29,7 @@ void st_init();
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in // Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform. // steps. Microseconds specify how many microseconds the move should take to perform.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate); void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate, double millimeters);
// Block until all buffered steps are executed // Block until all buffered steps are executed
void st_synchronize(); void st_synchronize();