removed more orphaned code
This commit is contained in:
parent
e8f94e6a87
commit
b2de9abf86
@ -1,272 +0,0 @@
|
||||
require "pp"
|
||||
# A tiny ruby script to design and test the implementation of the arc-support
|
||||
|
||||
class Numeric
|
||||
# -1 if the number < 0, 1 if number >= 0
|
||||
def sign
|
||||
return 0 if self == 0
|
||||
(self < 0) ? -1 : 1
|
||||
end
|
||||
end
|
||||
|
||||
class CircleTest
|
||||
include Math
|
||||
|
||||
def init
|
||||
@pixels = []
|
||||
@tool_position = [14,14]
|
||||
40.times { @pixels << '.'*40 }
|
||||
end
|
||||
|
||||
def plot_pixel(x,y, c)
|
||||
return if x<0 || y<0 || x>39 || y > 39
|
||||
@pixels[y] = @pixels[y][0..x][0..-2]+c+@pixels[y][(x+1)..-1]
|
||||
end
|
||||
|
||||
def show
|
||||
@pixels.each do |line|
|
||||
puts line.gsub('.','. ').gsub('0','0 ').gsub('1','1 ').gsub('2','2 ').gsub('X','X ').gsub('o','o ')
|
||||
end
|
||||
end
|
||||
|
||||
# dP[x+1,y]: 1 + 2 x
|
||||
# dP[x-1,y]: 1 - 2 x
|
||||
# dP[x, y+1]: 1 + 2 y
|
||||
# dP[x, y-1]: 1 - 2 y
|
||||
|
||||
# dP[x+1, y+1]: 2 (1 + x + y) 1+2x+1+2y
|
||||
# dP[x+1, y-1]: 2 (1 + x - y) 1+2x+1-2y
|
||||
# dP[x-1, y-1]: 2 (1 - x - y) 2-2x-2y
|
||||
# dP[x-1, y+1]: 2 (1 - x + y) 2-2x+2x
|
||||
|
||||
# dP[x+a, y+b]: |dx| - 2*dx*x + |dy| + 2*dy*y
|
||||
|
||||
# Algorithm from the wikipedia aricle on the Midpoint circle algorithm.
|
||||
def raster_circle(radius)
|
||||
f = 1-radius
|
||||
ddF_x = 1
|
||||
ddF_y = -2*radius
|
||||
x = 0
|
||||
y = radius
|
||||
while x<=y
|
||||
if f>0
|
||||
y -= 1
|
||||
ddF_y += 2
|
||||
f += ddF_y
|
||||
end
|
||||
x += 1
|
||||
ddF_x += 2
|
||||
f += ddF_x
|
||||
plot_pixel(x+14,-y+14,'X')
|
||||
end
|
||||
x += 1
|
||||
ddF_x += 2
|
||||
f += ddF_x
|
||||
while y>0
|
||||
if f<0
|
||||
x += 1
|
||||
ddF_x += 2
|
||||
f += ddF_x
|
||||
end
|
||||
y -= 1
|
||||
ddF_y += 2
|
||||
f += ddF_y
|
||||
plot_pixel(x+14,-y+14,'o')
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
# An "ideal" arc. Computationally expensive, but always pure
|
||||
def pure_arc(theta, segment, angular_direction, radius)
|
||||
var = [(sin(theta)*(radius)), (cos(theta)*(radius))]
|
||||
error_sum = 0.0
|
||||
error_count = 0.0
|
||||
max_error = 0.0
|
||||
(PI*2*radius).ceil.times do
|
||||
if var[0].abs<var[1].abs
|
||||
major_axis = 0
|
||||
minor_axis = 1
|
||||
else
|
||||
major_axis = 1
|
||||
minor_axis = 0
|
||||
end
|
||||
delta = [var[1].sign*angular_direction, -var[0].sign*angular_direction]
|
||||
delta[0] = angular_direction if delta[0] == 0
|
||||
delta[1] = angular_direction if delta[1] == 0
|
||||
|
||||
var[major_axis] += delta[major_axis]
|
||||
var[minor_axis] = (sqrt((radius**2-var[major_axis]**2))*var[minor_axis].sign).round
|
||||
|
||||
error_count += 1
|
||||
error = (var[minor_axis].abs-(sqrt((radius**2)-var[major_axis]**2)).abs).abs
|
||||
max_error = [max_error,error].max
|
||||
error_sum += error
|
||||
|
||||
plot_pixel(var[0]+14, -var[1]+14, 'X')
|
||||
end
|
||||
puts "Average error: #{error_sum/error_count} Maximum eror: #{max_error}"
|
||||
|
||||
end
|
||||
|
||||
|
||||
# A DDA-direct search circle interpolator. Optimal and impure
|
||||
def arc_clean(theta, angular_travel, radius)
|
||||
radius = radius
|
||||
x = (sin(theta)*radius).round
|
||||
y = (cos(theta)*radius).round
|
||||
angular_direction = angular_travel.sign
|
||||
tx = (sin(theta+angular_travel)*radius).round
|
||||
ty = (cos(theta+angular_travel)*radius).round
|
||||
f = (x**2 + y**2 - radius**2).round
|
||||
min_x = 0
|
||||
max_x = 0
|
||||
i = 0
|
||||
|
||||
pp [x,y]
|
||||
|
||||
while true
|
||||
if i > 0
|
||||
plot_pixel(x+14, -y+14, "012"[i%3].chr)
|
||||
else
|
||||
plot_pixel(x+14, -y+14, "X")
|
||||
end
|
||||
|
||||
dx = (y==0) ? -x.sign : y.sign*angular_direction
|
||||
dy = (x==0) ? -y.sign : -x.sign*angular_direction
|
||||
|
||||
pp [[x,y],[dx,dy]]
|
||||
|
||||
if x.abs<y.abs
|
||||
f_straight = f + 1+2*x*dx
|
||||
f_diagonal = f_straight + 1+2*y*dy
|
||||
x += dx
|
||||
if (f_straight.abs < f_diagonal.abs)
|
||||
f = f_straight
|
||||
else
|
||||
y += dy
|
||||
f = f_diagonal
|
||||
end
|
||||
else
|
||||
f_straight = f + 1+2*y*dy
|
||||
f_diagonal = f_straight + 1+2*x*dx
|
||||
y += dy
|
||||
if (f_straight.abs < f_diagonal.abs)
|
||||
f = f_straight
|
||||
else
|
||||
x += dx
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
|
||||
f_should_be = (x**2+y**2-radius**2)
|
||||
if f.round != f_should_be.round
|
||||
raise "f out of range. Is #{f}, should be #{f_should_be}"
|
||||
end
|
||||
|
||||
min_x = [x,min_x].min
|
||||
max_x = [x,max_x].max
|
||||
break if (x.sign == tx.sign && y.sign == ty.sign) && (x.abs>=tx.abs) && (y.abs>=ty.abs)
|
||||
i += 1
|
||||
end
|
||||
puts "Target #{[tx,ty].inspect}"
|
||||
plot_pixel(tx+14, -ty+14, "o")
|
||||
|
||||
pp [x,y]
|
||||
|
||||
puts "Diameter: #{max_x-min_x}"
|
||||
end
|
||||
|
||||
# A DDA-direct search circle interpolator. Optimal and impure
|
||||
def arc_supaoptimal(theta, angular_travel, radius)
|
||||
radius = radius
|
||||
x = (sin(theta)*radius).round
|
||||
y = (cos(theta)*radius).round
|
||||
angular_direction = angular_travel.sign
|
||||
tx = (sin(theta+angular_travel)*(radius-0.5)).floor
|
||||
ty = (cos(theta+angular_travel)*(radius-0.5)).floor
|
||||
f = (x**2 + y**2 - radius**2).round
|
||||
x2 = 2*x
|
||||
y2 = 2*y
|
||||
dx = (y==0) ? -x.sign : y.sign*angular_direction
|
||||
dy = (x==0) ? -y.sign : -x.sign*angular_direction
|
||||
|
||||
max_steps = (angular_travel.abs*radius*2).floor
|
||||
|
||||
# dP[x+1,y]: 1 + 2 x
|
||||
# dP[x, y+1]: 1 + 2 y
|
||||
|
||||
max_steps.times do |i|
|
||||
if i > 0
|
||||
plot_pixel(x+20, -y+20, "012"[i%3].chr)
|
||||
else
|
||||
plot_pixel(x+20, -y+20, "X")
|
||||
end
|
||||
|
||||
|
||||
raise "x2 out of range" unless x2 == 2*x
|
||||
raise "y2 out of range" unless y2 == 2*y
|
||||
f_should_be = (x**2+y**2-radius**2)
|
||||
if f.round != f_should_be.round
|
||||
show
|
||||
raise "f out of range. Is #{f}, should be #{f_should_be}"
|
||||
|
||||
end
|
||||
|
||||
if x.abs<y.abs
|
||||
x += dx
|
||||
|
||||
f += 1+x2*dx
|
||||
x2 += 2*dx
|
||||
f_diagonal = f + 1 + y2*dy
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y += dy
|
||||
dx = y.sign*angular_direction unless y == 0
|
||||
y2 += 2*dy
|
||||
f = f_diagonal
|
||||
end
|
||||
dy = -x.sign*angular_direction unless x == 0
|
||||
else
|
||||
y += dy
|
||||
f += 1+y2*dy
|
||||
y2 += 2*dy
|
||||
f_diagonal = f + 1 + x2*dx
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
x += dx
|
||||
dy = -x.sign*angular_direction unless x == 0
|
||||
x2 += 2*dx
|
||||
f = f_diagonal
|
||||
end
|
||||
dx = y.sign*angular_direction unless y == 0
|
||||
end
|
||||
break if x*ty.sign*angular_direction>=tx*ty.sign*angular_direction &&
|
||||
y*tx.sign*angular_direction<=ty*tx.sign*angular_direction
|
||||
end
|
||||
plot_pixel(tx+20, -ty+20, "o")
|
||||
return {:tx => tx, :ty => ty, :x => x, :y => y}
|
||||
end
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
test = CircleTest.new
|
||||
test.init
|
||||
|
||||
test.arc_clean(0, Math::PI*2, 3)
|
||||
# (1..10000).each do |r|
|
||||
# test.init
|
||||
# data = test.arc_supaoptimal(2.9, Math::PI*1, r)
|
||||
# if (data[:tx]-data[:x]).abs > 1 || (data[:ty]-data[:y]).abs > 1
|
||||
# puts "r=#{r} fails target control"
|
||||
# pp data
|
||||
# puts
|
||||
# end
|
||||
# end
|
||||
|
||||
# test.init
|
||||
# data = test.arc_supaoptimal(1.1, -Math::PI, 19)
|
||||
# pp data
|
||||
|
||||
#test.pure_arc(0,1,1,4)
|
||||
|
||||
test.show
|
@ -1,18 +0,0 @@
|
||||
require 'pp'
|
||||
include Math
|
||||
|
||||
def calc_theta(x,y)
|
||||
theta = atan(1.0*x/y.abs)
|
||||
return(theta) if(y>0)
|
||||
if (theta>0)
|
||||
return(PI-theta)
|
||||
else
|
||||
return(-PI-theta)
|
||||
end
|
||||
end
|
||||
|
||||
pp calc_theta(5,0)/PI*180;
|
||||
|
||||
# (-180..180).each do |deg|
|
||||
# pp [deg, calc_theta(sin(1.0*deg/180*PI), cos(1.0*deg/180*PI))/PI*180]
|
||||
# end
|
Loading…
Reference in New Issue
Block a user