File re-organization. New Makefile.
- Re-organized source code files into a ‘grbl’ directory to lessen one step in compiling Grbl through the Arduino IDE. - Added an ‘examples’ directory with an upload .INO sketch to further simplify compiling and uploading Grbl via the Arduino IDE. - Updated the Makefile with regard to the source code no longer being in the root directory. All files generated by compiling is placed in a separate ‘build’ directory to keep things tidy. The makefile should operate in the same way as it did before.
This commit is contained in:
236
grbl/system.c
Normal file
236
grbl/system.c
Normal file
@ -0,0 +1,236 @@
|
||||
/*
|
||||
system.c - Handles system level commands and real-time processes
|
||||
Part of Grbl v0.9
|
||||
|
||||
Copyright (c) 2014-2015 Sungeun K. Jeon
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "grbl.h"
|
||||
|
||||
|
||||
void system_init()
|
||||
{
|
||||
CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins
|
||||
#ifdef DISABLE_CONTROL_PIN_PULL_UP
|
||||
CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down.
|
||||
#else
|
||||
CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation.
|
||||
#endif
|
||||
CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt
|
||||
PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt
|
||||
}
|
||||
|
||||
|
||||
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
|
||||
// only the realtime command execute variable to have the main program execute these when
|
||||
// its ready. This works exactly like the character-based realtime commands when picked off
|
||||
// directly from the incoming serial data stream.
|
||||
ISR(CONTROL_INT_vect)
|
||||
{
|
||||
uint8_t pin = (CONTROL_PIN & CONTROL_MASK);
|
||||
#ifndef INVERT_CONTROL_PIN
|
||||
pin ^= CONTROL_MASK;
|
||||
#endif
|
||||
// Enter only if any CONTROL pin is detected as active.
|
||||
if (pin) {
|
||||
if (bit_istrue(pin,bit(RESET_BIT))) {
|
||||
mc_reset();
|
||||
} else if (bit_istrue(pin,bit(FEED_HOLD_BIT))) {
|
||||
bit_true(sys.rt_exec_state, EXEC_FEED_HOLD);
|
||||
} else if (bit_istrue(pin,bit(CYCLE_START_BIT))) {
|
||||
bit_true(sys.rt_exec_state, EXEC_CYCLE_START);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Executes user startup script, if stored.
|
||||
void system_execute_startup(char *line)
|
||||
{
|
||||
uint8_t n;
|
||||
for (n=0; n < N_STARTUP_LINE; n++) {
|
||||
if (!(settings_read_startup_line(n, line))) {
|
||||
report_status_message(STATUS_SETTING_READ_FAIL);
|
||||
} else {
|
||||
if (line[0] != 0) {
|
||||
printString(line); // Echo startup line to indicate execution.
|
||||
report_status_message(gc_execute_line(line));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Directs and executes one line of formatted input from protocol_process. While mostly
|
||||
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
|
||||
// settings, initiating the homing cycle, and toggling switch states. This differs from
|
||||
// the realtime command module by being susceptible to when Grbl is ready to execute the
|
||||
// next line during a cycle, so for switches like block delete, the switch only effects
|
||||
// the lines that are processed afterward, not necessarily real-time during a cycle,
|
||||
// since there are motions already stored in the buffer. However, this 'lag' should not
|
||||
// be an issue, since these commands are not typically used during a cycle.
|
||||
uint8_t system_execute_line(char *line)
|
||||
{
|
||||
uint8_t char_counter = 1;
|
||||
uint8_t helper_var = 0; // Helper variable
|
||||
float parameter, value;
|
||||
switch( line[char_counter] ) {
|
||||
case 0 : report_grbl_help(); break;
|
||||
case '$' : // Prints Grbl settings
|
||||
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
||||
if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print.
|
||||
else { report_grbl_settings(); }
|
||||
break;
|
||||
case 'G' : // Prints gcode parser state
|
||||
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
||||
else { report_gcode_modes(); }
|
||||
break;
|
||||
case 'C' : // Set check g-code mode [IDLE/CHECK]
|
||||
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
||||
// Perform reset when toggling off. Check g-code mode should only work if Grbl
|
||||
// is idle and ready, regardless of alarm locks. This is mainly to keep things
|
||||
// simple and consistent.
|
||||
if ( sys.state == STATE_CHECK_MODE ) {
|
||||
mc_reset();
|
||||
report_feedback_message(MESSAGE_DISABLED);
|
||||
} else {
|
||||
if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
|
||||
sys.state = STATE_CHECK_MODE;
|
||||
report_feedback_message(MESSAGE_ENABLED);
|
||||
}
|
||||
break;
|
||||
case 'X' : // Disable alarm lock [ALARM]
|
||||
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
||||
if (sys.state == STATE_ALARM) {
|
||||
report_feedback_message(MESSAGE_ALARM_UNLOCK);
|
||||
sys.state = STATE_IDLE;
|
||||
// Don't run startup script. Prevents stored moves in startup from causing accidents.
|
||||
} // Otherwise, no effect.
|
||||
break;
|
||||
// case 'J' : break; // Jogging methods
|
||||
// TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be
|
||||
// susceptible to other realtime commands except for e-stop. The jogging function is intended to
|
||||
// be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped
|
||||
// steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would
|
||||
// start motion and toggle off would initiate a deceleration to stop. One could 'feather' the
|
||||
// motion by repeatedly toggling to slow the motion to the desired location. Location data would
|
||||
// need to be updated real-time and supplied to the user through status queries.
|
||||
// More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are
|
||||
// handled by the planner. It would be possible for the jog subprogram to insert blocks into the
|
||||
// block buffer without having the planner plan them. It would need to manage de/ac-celerations
|
||||
// on its own carefully. This approach could be effective and possibly size/memory efficient.
|
||||
default :
|
||||
// Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
|
||||
if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
|
||||
switch( line[char_counter] ) {
|
||||
case '#' : // Print Grbl NGC parameters
|
||||
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
||||
else { report_ngc_parameters(); }
|
||||
break;
|
||||
case 'H' : // Perform homing cycle [IDLE/ALARM]
|
||||
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
|
||||
sys.state = STATE_HOMING; // Set system state variable
|
||||
// Only perform homing if Grbl is idle or lost.
|
||||
mc_homing_cycle();
|
||||
if (!sys.abort) { // Execute startup scripts after successful homing.
|
||||
sys.state = STATE_IDLE; // Set to IDLE when complete.
|
||||
st_go_idle(); // Set steppers to the settings idle state before returning.
|
||||
system_execute_startup(line);
|
||||
}
|
||||
} else { return(STATUS_SETTING_DISABLED); }
|
||||
break;
|
||||
case 'I' : // Print or store build info. [IDLE/ALARM]
|
||||
if ( line[++char_counter] == 0 ) {
|
||||
settings_read_build_info(line);
|
||||
report_build_info(line);
|
||||
} else { // Store startup line [IDLE/ALARM]
|
||||
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
|
||||
helper_var = char_counter; // Set helper variable as counter to start of user info line.
|
||||
do {
|
||||
line[char_counter-helper_var] = line[char_counter];
|
||||
} while (line[char_counter++] != 0);
|
||||
settings_store_build_info(line);
|
||||
}
|
||||
break;
|
||||
case 'N' : // Startup lines. [IDLE/ALARM]
|
||||
if ( line[++char_counter] == 0 ) { // Print startup lines
|
||||
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
|
||||
if (!(settings_read_startup_line(helper_var, line))) {
|
||||
report_status_message(STATUS_SETTING_READ_FAIL);
|
||||
} else {
|
||||
report_startup_line(helper_var,line);
|
||||
}
|
||||
}
|
||||
break;
|
||||
} else { // Store startup line [IDLE Only] Prevents motion during ALARM.
|
||||
if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
|
||||
helper_var = true; // Set helper_var to flag storing method.
|
||||
// No break. Continues into default: to read remaining command characters.
|
||||
}
|
||||
default : // Storing setting methods [IDLE/ALARM]
|
||||
if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
||||
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
|
||||
if (helper_var) { // Store startup line
|
||||
// Prepare sending gcode block to gcode parser by shifting all characters
|
||||
helper_var = char_counter; // Set helper variable as counter to start of gcode block
|
||||
do {
|
||||
line[char_counter-helper_var] = line[char_counter];
|
||||
} while (line[char_counter++] != 0);
|
||||
// Execute gcode block to ensure block is valid.
|
||||
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
|
||||
if (helper_var) { return(helper_var); }
|
||||
else {
|
||||
helper_var = trunc(parameter); // Set helper_var to int value of parameter
|
||||
settings_store_startup_line(helper_var,line);
|
||||
}
|
||||
} else { // Store global setting.
|
||||
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
||||
if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); }
|
||||
return(settings_store_global_setting((uint8_t)parameter, value));
|
||||
}
|
||||
}
|
||||
}
|
||||
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
|
||||
}
|
||||
|
||||
|
||||
// Returns machine position of axis 'idx'. Must be sent a 'step' array.
|
||||
// NOTE: If motor steps and machine position are not in the same coordinate frame, this function
|
||||
// serves as a central place to compute the transformation.
|
||||
float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx)
|
||||
{
|
||||
float pos;
|
||||
#ifdef COREXY
|
||||
if (idx==A_MOTOR) {
|
||||
pos = 0.5*((steps[A_MOTOR] + steps[B_MOTOR])/settings.steps_per_mm[idx]);
|
||||
} else { // (idx==B_MOTOR)
|
||||
pos = 0.5*((steps[A_MOTOR] - steps[B_MOTOR])/settings.steps_per_mm[idx]);
|
||||
}
|
||||
#else
|
||||
pos = steps[idx]/settings.steps_per_mm[idx];
|
||||
#endif
|
||||
return(pos);
|
||||
}
|
||||
|
||||
|
||||
void system_convert_array_steps_to_mpos(float *position, int32_t *steps)
|
||||
{
|
||||
uint8_t idx;
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
position[idx] = system_convert_axis_steps_to_mpos(steps, idx);
|
||||
}
|
||||
return;
|
||||
}
|
Reference in New Issue
Block a user